
 

 

NAVAL 
POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 
 

Approved for public release; distribution is unlimited 

MAPPING, AWARENESS, AND VIRTUALIZATION 
NETWORK ADMINISTRATOR TRAINING TOOL 

(MAVNATT) ARCHITECTURE AND FRAMEWORK 
 

by 
 

Daniel C. McBride 
 

June 2015 
 

Thesis Advisor:  Gurminder Singh 
Thesis Co-Advisor: John Gibson 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send 
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to 
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington, DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
June 2015 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE   
MAPPING, AWARENESS, AND VIRTUALIZATION NETWORK 
ADMINISTRATOR TRAINING TOOL (MAVNATT) ARCHITECTURE AND 
FRAMEWORK 

5. FUNDING NUMBERS 
 

6. AUTHOR(S)  Daniel C. McBride 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Marine Forces Cyber Command 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the official policy 
or position of the Department of Defense or the U.S. Government. IRB Protocol number ____N/A____.  

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
A 

13. ABSTRACT (maximum 200 words)  
 
Tactical networks are becoming more critical in maintaining centers of gravity for military operations as cyberspace 
becomes contested at all levels of war. As a result, the growth of network centric operations and increased operational 
tempo in the cyber domain has created a significant training gap for tactical network administrators. This research 
suggests that a computer-based environment can integrate the operational network and a training network into the 
same system to allow tactical network administrators to concurrently administer the network and conduct realistic 
training on an identical virtual network. A review of commercial and open-source tools identifies the baseline for an 
architecture and framework for this system. The architecture consists of a modular design comprised of mapping, 
awareness, and virtualization modules. The framework integrates these modules by defining a network topology 
format, programming language, graphical user interface solution, and virtualization solution. This research concludes 
by providing an implementation that demonstrates desired capabilities. While we demonstrate that the project goals 
are attainable, there is a need for further research and development to deploy this capability to fleet units. 
 
 

 
 
14. SUBJECT TERMS  
network administrator training, network management, network virtualization, tactical network 
topology, rapid network design, modeling and simulation  

 

15. NUMBER OF 
PAGES  

99 
16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540–01-280-5500 Standard Form 298 (Rev. 2–89)  
 Prescribed by ANSI Std. 239–18 



 ii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii 

Approved for public release; distribution is unlimited 
 
 

MAPPING, AWARENESS, AND VIRTUALIZATION NETWORK 
ADMINISTRATOR TRAINING TOOL (MAVNATT) ARCHITECTURE AND 

FRAMEWORK 
 
 

Daniel C. McBride 
Major, United States Marine Corps 

B.S., University of Missouri - Columbia, 1999 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN COMPUTER SCIENCE 
 

from the 
 

NAVAL POSTGRADUATE SCHOOL 
June 2015 

 
 

 
 
Author:  Daniel C. McBride 

 
 
 

Approved by:  Gurminder Singh 
Thesis Advisor 

 
 
 

John Gibson  
Thesis Co-Advisor 

 
 
 

Peter Denning 
Chair, Department of Computer Science  



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 v 

ABSTRACT 

Tactical networks are becoming more critical in maintaining centers of gravity for 

military operations as cyberspace becomes contested at all levels of war. As a result, the 

growth of network centric operations and increased operational tempo in the cyber 

domain has created a significant training gap for tactical network administrators. This 

research suggests that a computer-based environment can integrate the operational 

network and a training network into the same system to allow tactical network 

administrators to concurrently administer the network and conduct realistic training on an 

identical virtual network. A review of commercial and open-source tools identifies the 

baseline for an architecture and framework for this system. The architecture consists of a 

modular design comprised of mapping, awareness, and virtualization modules. The 

framework integrates these modules by defining a network topology format, 

programming language, graphical user interface solution, and virtualization solution. This 

research concludes by providing an implementation that demonstrates desired 

capabilities. While we demonstrate that the project goals are attainable, there is a need for 

further research and development to deploy this capability to fleet units. 



 vi 

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii 

TABLE OF CONTENTS 

I. INTRODUCTION .............................................................................................................1 
A. OVERVIEW .........................................................................................................1 
B. MOTIVATION.....................................................................................................2 
C. SCOPE ..................................................................................................................3 
D. RESEARCH OBJECTIVE .................................................................................3 
E. EXPLORATORY RESEARCH QUESTIONS .................................................4 
F. ASSUMPTIONS ...................................................................................................4 
G. APPROACH .........................................................................................................5 
H. BENEFITS OF RESEARCH ..............................................................................5 
I. ORGANIZATION ...............................................................................................5 

II. BACKGROUND ................................................................................................................7 
A. OVERVIEW .........................................................................................................7 
B. NETWORK ADMINISTRATOR TRAINING .................................................8 

1. Required Training ...............................................................................8 
2. Skill Progression/Enhancement Training ..........................................9 
3. Training & Readiness Individual and Collective Events .................9 
4. Network Administrator Training in Tactical Environments.........10 
5. Network Administrator Training Summary ...................................11 

C. CURRENT TOOLS SURVEY ..........................................................................11 
1. Mapping ..............................................................................................12 

a. Internet Protocol Suite ............................................................13 
b. Simple Network Management Protocol (SNMP) ...................14 
c. Angry IP Scanner....................................................................16 
d. Nmap/Zenmap. ........................................................................17 
e. Mapping Summary ..................................................................18 

2. Awareness ...........................................................................................19 
a. SolarWinds Network Performance Manager.........................19 
b. Nagios ......................................................................................21 
c. OpenNMS ................................................................................22 
d. Awareness Summary ...............................................................23 

3. Virtualization......................................................................................24 
a. VirtualBox ...............................................................................25 
b. VMware Fusion.......................................................................26 
c. Kernel-Based Virtual Machine (KVM) ..................................27 
d. Virtualization Summary ..........................................................28 

4. Network Simulators ...........................................................................29 
a. Graphical Network Simulator (GNS3) ...................................29 
b. Common Open Research Emulator .......................................30 
c. Netkit........................................................................................31 
d. Network Simulator Summary .................................................32 

5. Current Tools Survey Summary ......................................................33 
D. SUMMARY ........................................................................................................34 



 viii 

III. DESIGN AND METHODOLOGY ................................................................................37 
A. OVERVIEW .......................................................................................................37 
B. MAVNATT ARCHITECTURE .......................................................................37 

1. Mapping ..............................................................................................38 
a. Objectives .................................................................................38 
b. Requirements ...........................................................................38 

2. Awareness ...........................................................................................39 
a. Objectives .................................................................................39 
b. Requirements ...........................................................................39 

3. Virtualization......................................................................................39 
a. Requirements ...........................................................................40 

4. Architecture Summary ......................................................................40 
C. MAVNATT FRAMEWORK ............................................................................40 
D. NETWORK TOPOLOGY FORMAT .............................................................41 

1. Network Topology Format Objectives .............................................42 
2. Network Topology Format Review ..................................................42 

a. Neo4j ........................................................................................43 
b. JSON Format ..........................................................................43 
c. GraphML Format ...................................................................43 
d. Network Topology Format Survey Summary ........................44 

3. Network Topology Format Component Prototypes .......................44 
a. JSON Prototype .......................................................................44 
b. GraphML Prototype ................................................................45 

4. Network Topology Format Component Summary .........................45 
E. PROGRAMMING LANGUAGE .....................................................................45 

1. Programming Language Objectives .................................................46 
2. Programming Language Review ......................................................46 

a. C++ ..........................................................................................46 
b. Java ..........................................................................................47 
c. Python ......................................................................................47 
d. Programming Language Review Summary ...........................47 

3. Programming Language Component Summary .............................48 
F. GUI ......................................................................................................................48 

1. GUI Objectives ...................................................................................49 
2. GUI Review.........................................................................................49 

a. Java Swing GUI ......................................................................49 
b. Python Tkinter GUI ................................................................50 
c. Qt GUI .....................................................................................50 
d. GUI Review Summary ............................................................50 

3. GUI Component Prototype ...............................................................50 
a. Python Tkinter GUI Prototype ...............................................51 

4. GUI Component Summary ...............................................................51 
G. VIRTUALIZATION API ..................................................................................52 

1. Virtualization API Objectives ...........................................................52 
2. Component Prototypes ......................................................................53 



 ix 

a. Java VirtualBox API ...............................................................53 
b. Python VirtualBox API ...........................................................53 

3. Virtualization API Component Summary .......................................54 
H. COMPONENT PROTOTYPE SUMMARY ...................................................54 
I. SUMMARY ........................................................................................................55 

IV. IMPLEMENTATION .....................................................................................................57 
A. OVERVIEW .......................................................................................................57 
B. INTEGRATED PROTOTYPE .........................................................................57 

1. Prototype Design ................................................................................57 
2. Prototype Capabilities .......................................................................57 

C. IMPLEMENTATION .......................................................................................58 
1. Overview .............................................................................................58 
2. Mapping ..............................................................................................58 
3. Awareness ...........................................................................................60 
4. Virtualization......................................................................................63 

D. SUMMARY ........................................................................................................65 

V. CONCLUSIONS AND FUTURE RESEARCH ...........................................................67 
A. SUMMARY ........................................................................................................67 
B. CONCLUSIONS ................................................................................................67 

1. Research Objective ............................................................................67 
2. Exploratory Research Questions ......................................................68 

C. RECOMMENDATIONS FOR FUTURE RESEARCH .................................69 
1. MAVNATT Architecture Future Research.....................................70 

a. Mapping Module .....................................................................70 
b. Awareness Module ..................................................................70 
c. Virtualization Module .............................................................71 

2. MAVNATT Framework Future Research ......................................72 
a. Network Topology Format Component ..................................72 
b. GUI Component ......................................................................72 

3. MAVNATT System Future Research ..............................................72 
4. MAVNATT Employment Considerations .......................................73 

a. Network Planning and Validation Tool .................................73 
b. Integrated Network Training ..................................................73 
c. Cyber Operations.....................................................................73 

LIST OF REFERENCES ......................................................................................................75 

INITIAL DISTRIBUTION LIST .........................................................................................79 

 



 x 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 xi 

LIST OF FIGURES 

Figure 1. MAVNATT Conceptual Model .........................................................................7 
Figure 2. Individual 0651 Training Events, from [7] ........................................................9 
Figure 3. Sample of Collective Training Events, from [7] ..............................................10 
Figure 4. Internet Protocol Suite, from [9] ......................................................................13 
Figure 5. SNMP Model, from [14] ..................................................................................15 
Figure 6. Angry IP Scanner Interface on Mac OS X, from [15] .....................................17 
Figure 7. Zenmap Interface on Mac OS X ......................................................................18 
Figure 8. SolarWinds NPM 11.5 Interface, from [21] ....................................................20 
Figure 9. Nagios Interface, from [26] ..............................................................................21 
Figure 10. OpenNMS Interface, from [27] ........................................................................22 
Figure 11. VirtualBox Interface on Windows, from [30] ..................................................26 
Figure 12. VMware Fusion 7 Interface, from  [35] ...........................................................27 
Figure 13. KVM Interface .................................................................................................28 
Figure 14. GNS3 Interface, from [37] ...............................................................................30 
Figure 15. CORE Interface, from [38] ..............................................................................31 
Figure 16. Netkit Interface, from [40] ...............................................................................32 
Figure 17. MAVNATT Model compared to Network Monitoring and Network 

Simulation Tools ..............................................................................................34 
Figure 18. MAVNATT Conceptual Model .......................................................................37 
Figure 19. MAVNATT Framework ..................................................................................41 
Figure 20. MAVNATT Network Topology Format Integration .......................................42 
Figure 21. MAVNATT Programming Language Integration ...........................................46 
Figure 22. MAVNATT GUI Integration ...........................................................................48 
Figure 23. Mockup - MAVNATT GUI .............................................................................49 
Figure 24. MAVNATT GUI Component Prototype .........................................................51 
Figure 25. MAVNATT Virtualization API Integration ....................................................52 
Figure 26. GraphML Network Topology ..........................................................................59 
Figure 27. MAVNATT Implementation - Starting Interface ............................................61 
Figure 28. MAVNATT Implementation - Import Network Topology .............................61 
Figure 29. MAVNATT Implementation - Ping Status ......................................................62 
Figure 30. MAVNATT Implementation - Network Overlay ............................................63 
Figure 31. MAVNATT Implementation—VirtualBox and Virtual Machines..................64 
 



 xii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xiii 

LIST OF TABLES 

Table 1. Awareness Tools Summary .............................................................................23 
Table 2. Virtualization Tools Summary .........................................................................29 
Table 3. Network Simulation Tools Summary ..............................................................32 
Table 4. Component Prototype Summary ......................................................................54 
 
 



 xiv 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xv 

LIST OF ACRONYMS AND ABBREVIATIONS 

API Application Program Interface 

CUCM Cisco Unified Communications Manager 

DOD  Department of Defense 

DODIN DOD Information Network 

EoIP Everything over Internet Protocol 

GIG Global Information Grid 

ICMP Internet Control Message Protocol 

IP Internet Protocol 

ITACS Information Technology and Communications Services 

JSON JavaScript Object Notation 

JVM Java Virtual Machine 

KVM Kernel-Based Virtual Machine 

LVC Live Virtual Constructive 

LXC Linux Containers 

MARFORCYBER Marine Forces Cyber 

MAVNATT Mapping, Awareness, and Virtualization Network Administrator 
Training Tool 

MET Mission Essential Task 

MIB Management Information Base 

MOS Military Occupational Skill 

NETOPS  Network Operations 

SDK Software Development Kit 

SNMP Simple Newark Management Protocol 

SOAP Simple Object Access Protocol 

T&R Training & Readiness 

UDP User Datagram Protocol 

UML User Mode Linux 

USMC  United States Marine Corps  

VM Virtual Machine 

WMI Windows Management Instrumentation 



 xvi 

XML Extensible Markup Language  

XPCOM Cross Platform Component Object Model 

 



 xvii 

ACKNOWLEDGMENTS 

First and foremost, I would like to thank my wife, Sally, for allowing me to fully 

invest in this opportunity. I am certain I can never thank her enough for what she has 

done through her constant support and understanding. I would also like to thank my 

daughter, Kaylie, who has brought endless inspiration and joy to our family.    

I would like to recognize my cohort, faculty, and friends who have provided 

academic support and encouragement during my time here; you helped the old man 

knock off some rust. It has been a pleasure to serve with them during this short time.  

I would like to express my greatest appreciation and gratitude to my advisors, Dr. 

Gurminder Singh and John Gibson. Their belief in a vision, guidance toward its 

accomplishment, and patience during the course of it were immeasurable. 

Lastly, I would like to thank Marine Forces Cyber for supporting our endeavor 

and making this project possible.  



 xviii 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1 

I. INTRODUCTION  

A. OVERVIEW 

The Marine Corps’ mission as an expeditionary, middleweight, and modern force 

that is capable of net-centric and cyber-centric operations requires the integration, 

operation, and management of complex and dynamic networks [1]. Computer networks 

enable military forces across all functional areas to support command and control, 

information sharing, and information dominance; they are centers of gravity for military 

operations and are critical to the success of the military. As the cyber domain becomes 

more contested and more technically complex, it is critical that network administrators be 

provided the training and tools to conduct effective network operations (NETOPS), 

defined as “activities conducted to operate and defend the DOD’s Global Information 

Grid (GIG)” [2].  The joint community executes three foundational cyber missions:  DOD 

information network (DODIN) operations, defensive cyberspace operations (DCO), and 

offensive cyberspace operations (OCO) [3]. NETOPS and DODIN operations will be the 

focus of this research. The terms GIG and DODIN refer to the same physical 

internetwork and are used interchangeably.  

Current Marine Corps NETOPS require network administrators to be skilled in 

many advanced systems, like Microsoft Active Directory, Microsoft Server 2012, Cisco 

routed networks, VMware virtualization tools, Solar Winds network monitoring tools, 

network filers, network attached storage, and a multitude of other niche equipment that 

supports the many different functional areas and operations. Network administrators are 

rarely offered the opportunity to train on the networks in a live or operational 

environment. Generally, network administrator activities are limited to responding to 

actual network outages or critical network modifications deemed necessary to ensure the 

network is responsive to the training scenario or operation being supported. Specifically, 

network administrators cannot train to tactics, techniques, and procedures on the live 

network as it could jeopardize the availability of the network to users. Furthermore, 

network administrators do not have simple and lightweight tools to manage the current 

network, as well as project how network changes may affect the live network.  



 2 

Network administrators can no longer be viewed simply as a support-only 

function to training events and operation. The criticality of communications and network 

operations demand the same training and operational capabilities as combat arms 

specialties in order to assess the impact of events on network operations and provide a 

platform by which the network administrators may be evaluated to the same degree as 

those of the other combat arms in live training or operational environments.   

Our research will investigate and prototype an environment that is capable of 

providing network administrators the ability to automatically map the network topology, 

maintain network awareness of components comprising that topology, and virtualize all 

or a portion of that topology for training and evaluation. The guidance for this 

environment will be that it is simple, lightweight, responsive, and resilient so it can 

operate across the spectrum of operations and in highly dynamic environments, 

specifically targeting the portion of the operational network under the oversight and 

operation of those being trained or evaluated. This research will concentrate on small-

scale tactical networks commonly found at the regiment/brigade level and below.   

B. MOTIVATION 

The motivation for this thesis derives from the author’s 14 years of experience 

provisioning, installing, operating, and maintaining tactical networks in the Marine 

Corps. Military garrison networks are very similar to commercial enterprise networks and 

utilize standard network operation and training methodologies. However, these common 

standards do not translate well to tactical networks. A tactical network is an integral part 

of its unit and must be capable of being moved, operated, and changed based on the needs 

of the unit to accomplish the unit’s mission. Procedurally, garrison and tactical network 

operations may be similar, but the underlying equipment, environment, and operational 

context to support a tactical network are dynamic and complex. Similarly, there is a gap 

in network training between garrison and tactical network administrators.  

Garrison network training is conducted in a stable environment where equipment, 

space, and time are not major limitations. Training can be facilitated on simulators, 



 3 

parallel architectures, or on fully virtualized architectures like the DOD cyber and 

information assurance ranges [4], [5]. 

Tactical networks are the complete opposite. Training equipment, space, and time 

are rarely available due to the tactical unit’s primary mission and limited embarkation 

capabilities. Tactical network administrators do not have the luxury of establishing 

parallel or fully virtualized architectures, let alone the capacity to haul the additional 

equipment necessary to do so. Operational tempo also reduces the time available for 

training, especially when a unit may setup and teardown the entire tactical infrastructure 

multiple times per day. This tactical network administrator training is a critical gap.  

Preliminary research identifies three functional areas required to support network 

administration in a tactical environment:  mapping, awareness, and virtualization. A 

single network administrator system that addresses all three functional areas could 

mitigate this training gap. 

C. SCOPE 

The primary scope of this thesis is to establish the framework and architecture of 

a mapping, awareness, and virtualization network administrator training tool 

(MAVNATT), thereby facilitating cohesive, follow-on research. It is important to 

identify that MAVNATT is intended to be a lightweight system, both figuratively and 

literally, to support network administrators in tactical environments. It is not intended to 

replace the existing DOD/Service cyber ranges, nor is it intended to replace the robust 

commercial applications currently used to support network operations at higher or more 

stable military network operation centers.     

D. RESEARCH OBJECTIVE   

The primary research objective this thesis endeavors to achieve is to demonstrate 

that a MAVNATT system is attainable through development of an architecture and 

framework leading to the specification of an operational prototype that is capable of 

providing network administrators a computer-assisted integrated ability to map the 



 4 

network topology, maintain network awareness of that topology, and virtualize all or a 

portion of that topology for training and evaluation. 

E. EXPLORATORY RESEARCH QUESTIONS  

The following research questions lead to the achievement of the research 

objective: 

1. What are suitable formats to represent a network topology for importing, 

exporting, and sharing? 

2. What are suitable libraries and application program interfaces (APIs) that can 

be utilized to create a graphical user interface (GUI) based system that is capable of 

visually representing physical and virtual networks? 

3. What are the methods of dynamically modeling a physical network to form a 

virtual network?  

4. What are the methods of modeling network devices in a virtual environment? 

5. Can this system be used to demonstrate scenario-based training?   

6. Can this system work with current DOD tools? 

F. ASSUMPTIONS  

A generic baseline must be assumed in order to begin this research. The following 

assumptions have been made in order to utilize research efforts efficiently and effectively 

and to produce a capable prototype. 

Network Topology. MAVNATT must have knowledge of the network. This is 

assumed because the research goal is to assist network administrators with mapping, 

providing awareness, and virtualizing an existing network. Therefore, a certain 

understanding, knowledge, and permission base must exist. This assumption prevents the 

researching of extremely niche areas and methodologies that could detract from the 

overall research goal. 

Open Standards. MAVNATT will focus on the utilization of open standards and 

systems. This is assumed in order to ensure application independence, platform 



 5 

independence, and long-term access to resources. This assumption prevents researchers 

from being locked out of understanding solutions, and it will assist in rapidly deploying 

an operational prototype.   

G. APPROACH  

We will explore technologies to determine suitable components to establish an 

architecture and framework for MAVNATT. After identifying the architecture modules, 

framework components will be identified and prototypes designed to support the 

integration of the modules. Finally, an integrated prototype will be designed that 

demonstrates properties desired in follow-on research and module development. 

H. BENEFITS OF RESEARCH 

The overarching MAVNATT project and research has the potential to 

demonstrate that a lightweight system can be utilized in tactical environments to provide 

training and evaluation capabilities to tactical network administrators without 

jeopardizing the unit mission and without jeopardizing the network on which users are 

operating. This thesis supports the primary project by identifying the training gap that 

exists for network administrators operating in tactical environments, and by identifying 

an architecture and framework for the MAVNATT system. 

I. ORGANIZATION 

This thesis is organized as follows:  

Chapter II: Background. This chapter identifies the training gap that exists for 

tactical network administrators. It then provides a summary of industry solutions used for 

network administrator operations and training that addresses each of the defined 

functional areas. Lastly, it reduces the classification of applications into two categories, 

network monitoring suites and network simulators, and demonstrates that these categories 

of applications do not cover the spectrum of task MAVNATT is intended to address.     

Chapter III: Design and Methodology. This chapter identifies the desired 

architecture and framework for the MAVNATT system. It demonstrates that the 



 6 

architecture modules align with the defined functional areas. It then demonstrates 

framework components that are required to integrate the modules.   

Chapter IV: Implementation. This chapter will demonstrate examine the 

implementation concepts of MAVNATT by demonstrating the architecture and 

framework with an integrated prototype.  

Chapter V: Conclusions and Future Research. This chapter summarizes the thesis 

effort, provides conclusions to the research questions, and provides recommendations for 

future research, specifically, advancing the research fidelity within each framework 

component and architecture module. 

 



 7 

II. BACKGROUND  

A. OVERVIEW 

The intent of MAVNATT is to provide a lightweight system that can be used to 

support network administrator training and operations. Preliminary research identifies 

three functional areas that are critical to tactical network administrators:  mapping, 

awareness, and virtualization. This conceptual model of a MAVNATT system is depicted 

in Figure 1. Mapping, or network auto-discovery, allows a network administrator to know 

the physical layout and composition of the network. Awareness, or network monitoring, 

allows a network administrator to understand the status and capability of the network. 

Virtualization provides an environment to train and evaluate administrator performance 

that does not harm the operational network. We feel a solution that supports these 

functional areas will greatly benefit network administrators in tactical environments.   

 
Figure 1.  MAVNATT Conceptual Model 

This chapter presents an overview of the current military network administrator 

training at the tactical level of a military unit. It then provides a survey of the current 



 8 

tools used by industry in each functional area of MAVNATT. It also surveys network 

simulators, which is a hybrid of these functional areas. 

B. NETWORK ADMINISTRATOR TRAINING 

In order to better understand the value of MAVNATT as a training tool, we must 

first understand the training of network administrators and the tasks they are expected to 

conduct in tactical environments. 

The United States Marine Corps (USMC) Military Occupational Specialties 

Manual (MOS) Manual [6] and Communication Training & Readiness (T&R) Manual [7] 

provide guidance with respect to the requirements for a trained USMC MOS 0651, Cyber 

Network Operator. Though these requirements are not consistent across the DOD, they 

provide a reference point to describe military network administrator training.   

1. Required Training  

MOS training, or required training, is where core skill training is provided to the 

individual Marine, normally at an MOS-producing formal school course. The MOS 

Manual states that designated Marines for cyber network operator, or 0651s, must 

complete two courses at the Marine Corps Communications and Electronics School 

(MCCES), located at Marine Corps Base Twenty-nine Palms, California: M09CGW1 

Information Technology (IT) Essentials and M09BNW1 Cyber Network Specialist. The 

outcome of these courses provides a baseline-trained network specialist that is capable of 

the 1000-level individual events outlined in Figure 2. 



 9 

Figure 2.  Individual 0651 Training Events, from [7] 

2. Skill Progression/Enhancement Training  

The USMC provides follow-on training to increase overall skills or knowledge. 

Marine 0651 follow-on training is provided solely through MCCES at resident courses in 

29 Palms and the MCCES-run communication training centers (CTCs) located at each 

Marine Expeditionary Force (MEF). These schools provide classes covering the 2000-level 

individual events outlined in Figure 2. This training is provided at the discretion of the unit 

responsible for the individual 0651 and is limited by the availability of classes or seats.   

3. Training & Readiness Individual and Collective Events 

Marine 0651s must also train to all collective events for their unit, which are 

found in the T&R manuals for the associated unit (i.e., infantry, artillery, logistics). These 

collective events are vague and often fail to specifically identify the individual tasks 

associated with the collective event, which can prevent 0651s from being properly trained 

or evaluated during unit level collective training. Concurrent to the unit collective 

training, all 0651 are expected to be able to execute 1000- and 2000-level individual 

events, regardless of their rank and whether or not they have received the actual training.   

This is normally due to the quantity and rank of 0651s assigned to units and not a 

function of the unit attempting to disregard the MOS Manual and T&R manuals. Figure 3 

provides an example of collective events for a communication battalion.   



 10 

 
Figure 3.  Sample of Collective Training Events, from [7] 

4. Network Administrator Training in Tactical Environments 

Units conduct block training to meet the unit’s Mission Essential Tasks (METs), 

associated with the unit T&R manual. This training normally progresses from individual 

to collective events over the course of three to six months, depending on unit operational 

tempo and deployment cycles. During this training, a network administrator may be in a 

tactical environment for multiple five-day training evolutions covering 1000- to 5000-

level events, which are individual to platoon level events. Figures 2 and 3 provide 

examples of the tasks expected to be conducted, such as “0651-INST-1403 - Install 

network equipment,” “0651-OPER-2503 - Monitor Data Services,” and “COMM-PIOM-

5040 - Provide data network services.”  These tasks are very vague and do not provide 

the detail and requirements that support network administrator training.   

During the same six-month training period, the same network administrator may 

participate in an additional 30-day training evolution covering 5000- to 8000-level 



 11 

events, which includes platoon through regimental level events. These tasks include 

“COMM-PIOM-5050 - Operate and EoIP communications system,” “COMM-PIOM-

6050 - Operate and EoIP communications system,” and “COMM-PIOM-7050 - Operate 

and EoIP communications system,” where EoIP means everything over Internet protocol. 

These tasks are broad, redundant, and cannot easily be decomposed into subordinate tasks 

for network administrator training.   

During all these individual and collective events, the unit and supported personnel 

require the network to be operational for the duration of the training evolution. This often 

means that 0651s get minimal training opportunities, relegated only to the required 

installation, maintenance, and teardown of the network. Any training opportunities 

beyond these required tasks could interfere with the stability of the network and are 

therefore not authorized.   

5. Network Administrator Training Summary 

We can see from these 1000- and 2000-level events that a network administrator 

is expected to be broadly trained and extremely capable in support of his unit. The 

specific task, standard, and conditions outlined in the T&R manuals do not provide 

designated tools for the support of network operations and training, nor methods of 

evaluation of the skills the 0651. Therefore, there is a significant gap in the ability to train 

across the full complement of tasks and events directed in accordance with the MOS 

Manual and T&R manuals. This training gap is what MAVNATT is attempting to 

correct, by allowing 0651s, or network administrators, to be able to conduct operations 

and training on the same network topology without risk to its operation. 

C. CURRENT TOOLS SURVEY 

As discussed in Section B, there are no tools designated by the T&R Manual for 

the operations and training of network administrators. Consequently, many units purchase 

commercial-off-the-shelf tools to support operations, but they do not correspondingly 

purchase tools that support network administrator training. More interestingly, there does 

not appear to be a tool that completely integrates network operations and training. 



 12 

The following sections survey tools currently in use by industry and academic 

institutions in order to identify capabilities that are critical to tactical level network 

operations and training; such tools are considered to provide components for the 

MAVNATT prototype. Our criteria to be utilized in the survey include whether (1) the 

tools were utilized in the academic courses of instruction, (2) the tools were utilized in 

current DOD network domains, or (3) the tools were identified as predominant leads in 

their domain through multiple Internet searches. We have broken this survey down into 

the three identified functional areas: mapping, awareness, and virtualization. We also 

survey network simulators.  

1. Mapping 

Network mapping is the process of discovering devices and their associated 

connectivity on a network. As networks become more complicated and dynamic, network 

administrators require the support of automated mapping tools to verify their current 

topology and to identify possible rogue devices or services that pose a security risk to the 

network. The availability of automated network mapping tools improves the effectiveness 

and efficiency in the tactical domain by allowing network administrators to identify the 

network topology, compare it to a planned topology, or identify changes to a topology so 

the changes can be validated.    

 In a tactical environment, the ability to quickly and effectively verify a network 

plan also minimizes the personnel requirement and workload involved in troubleshooting 

activities during the establishment and maintenance phases of a network. Network maps 

can increase a network administrator’s situational awareness by providing a complete and 

accurate view of the network in order to maintain availability and security of the network. 

Due to the constant state of network flux resulting from the need to establish and 

teardown the network multiple times per day, equipment faults and manual topology 

changes occur at a very high rate. Network maps allow network administrators to respond 

quickly to these faults and changes.  



 13 

This section discusses the Internet Protocol Suite, simple network management 

protocol (SNMP), and two applications that utilize basic protocol characteristics for 

mapping a network topology, Angry IP Scanner and NMap. 

a. Internet Protocol Suite 

The Internet Protocol Suite (also referred to as the TCP/IP Protocol Suite) consists 

of the core network protocol standards that provide the underlying architecture for all 

networks [8].  These same protocols provide the basis for all network management, 

mapping, monitoring, and awareness tools. The Internet Protocol Suite is graphically 

described in Figure 4. 

 
Figure 4.  Internet Protocol Suite, from [9] 

The protocols defined in the Internet Protocol Suite have specific characteristics 

that they are expected to demonstrate during the normal or failed operations in support of 

the transportation of data, intercommunication of devices, and the management of 

networked devices. These automated protocol communications and responses allow 

networks to operate at extreme speeds with minimal user interaction. Network 

administrators can use these protocol characteristics to infer certain attributes about the 

network, such as latency and hops between devices. The majority of the protocols operate 



 14 

automatically among network-connected devices; therefore, utilities were developed to 

interact with the protocols for the purposes of retrieving user accessible information. 

Utilities such as ping and traceroute exploit these protocol characteristics in order 

to measure specific aspects of the network [10]. Ping can determine possible existence of 

a device on the network and the latency to that device based on round trip times. 

Traceroute can determine the existence and availability of a route to a device and the 

transit delays through devices. These measurements are only available if the devices are 

properly configured to support the underlying protocols. For example, ping and 

traceroute depend on the operational availability of the Internet Control Message Protocol 

(ICMP) on the devices involved in the execution of these applications. 

Other utilities, such as Paris traceroute and Rocketfuel, were designed in order to 

mitigate specific protocol anomalies due to network characteristics, such as flow-based 

load balancing and Internet protocol (IP) ID counters [11]. These protocol utilities 

provide the foundation for the other mapping techniques and technologies that we survey; 

this is why they deserve their own discussion. No single protocol can individually map 

the network, which is why most techniques utilize multiple protocols to infer a network 

topology.   Most operating systems provide access to these protocols, but they do not 

provide the ability to import/export topologies based on the determination of the protocol. 

Manual interpretation and transcription can be used, but this is very time consuming. For 

these reasons, many utilities and applications are created to leverage these protocols for 

the purposes of network mapping. 

b. Simple Network Management Protocol (SNMP) 

SNMP is part of the Internet Protocol suite that exists at the application level. It is 

specifically designed for the management and monitoring of IP networks. SNMP consists 

of a set of standards for network management, a database schema, and a set of data 

objects [12]. SNMP provides access to management data on the managed systems that 

can then be queried or set by managing applications. Industry uses SNMP to monitor 

network availability, performance, and error rates. SNMP provides an excellent 

capability to derive network topologies because managing applications can get network 



 15 

interface information, including connected devices, directly from SNMP-managed 

devices. SNMP is available on all OSs including Windows, Mac OS X, and Linux. It is 

also available on Cisco routers, Cisco Unified Communications Manager (CUCM), and 

IP phones. A secure version of SNMP, or SNMPv3, is not as widely distributed or 

implemented in network architectures [13].  Figure 5 demonstrates the SNMP model with 

interactions between the SNMP manager and agents. 

 
Figure 5.  SNMP Model, from [14] 

SNMP uses a defined architecture consisting of SNMP Managers, SNMP Agents, 

and Management Information Bases (MIBs) to manage devices within a community. 

SNMP managers have the ability to collect information from SNMP Agents that are 

defined in a MIB. Each element of information in a MIB has an Object Identifier (OID) 

that is in Abstract Syntax Notation One (ASN.1). The SNMP Manager can query SNMP 

agents through predefined protocol language commands that consist of GET, GET-

NEXT, SET, GET-BULK, and NOTIFY. SNMP Agents can push information to the 

SNMP Manger through a trap, utilizing the NOTIFY command [13]. This simple 

architecture and language allows network administrators to maintain a very high level of 

visibility and control over the network. A very accurate picture of the network topology 

can be learned through standard SNMP MIBs. 



 16 

SNMP requires manual configuration of all devices on the network in order to 

provide SNMP Managers full visibility of the SNMP Agents and MIB data. Though this 

manual process could be integrated into unit procedures, it does not scale well to 

environments where joint or combined operations are conducted or where network 

devices are added and removed from tactical networks based on operational 

requirements. These additional systems may not be guaranteed to be running SNMP, and 

some devices may not have administrative permissions to allow network administrators 

to enable SNMP. There are also security concerns because not all devices have SNMPv3 

capability; using SNMPv1/v2 creates severe security vulnerabilities to the network. This 

issue suggests that SNMP should not be utilized as the primary mapping tool; however, 

SNMP should be considered for follow-on research to integrate it into MAVNATT. 

c. Angry IP Scanner 

Angry IP Scanner is an open-source and cross-platform network scanner designed 

to be fast and simple to use. It is a Java-based application that can scan individual or 

ranges of IP addresses, as well as ports and protocols [15], [16]. This application has a 

breadth of peer applications that will not be discussed, as they are all similar in capability 

and design. Angry IP Scanner is very simple in its implementation and utilizes the 

Internet IP Suite protocols and utilities to derive its information. Figure 6 demonstrates 

the Angry IP Scanner interface. 



 17 

 
Figure 6.  Angry IP Scanner Interface on Mac OS X, from [15] 

Conceptually, the methods and techniques used by the Angry IP Scanner and 

similar applications can be integrated into MAVNATT to support both mapping and 

awareness functional areas. Angry IP Scanner uses a brute force processes to determine if 

a network host responds to standard protocol requests. In most cases, unless a client is 

setup to explicitly deny these requests, there will be some level of response to indicate if 

the host is active and reachable. Angry IP Scanner and similar applications do not 

organically infer the network topology because they do not directly assess what network 

devices are connected to each other. These applications provide information such as 

availability and what devices are on the same broadcast domain, which can be used for 

mapping inferences.   

d. Nmap/Zenmap. 

Nmap is an open source network mapping tool that can be used by network 

administrators to discover or verify network topology, identify network services that are 

available, identify host operating systems, and identify other network protocol 

characteristics. Nmap provides a broader scan of network protocols and services than 

Angry IP Scanner. Nmap is a command line tool, although a graphical user interface 

called Zenmap is available to simplify Nmap usability. Figure 7 demonstrates the 



 18 

Zenmap interface. These tools were written in C++ and designed to work on large-scale 

networks. They can save an extensible markup language (XML) file that contains all the 

results from the scan for review. The Zenmap interface also provides a topology map that 

can be saved as an image [17], [18]. Nmap/Zenmap and its techniques should be 

investigated further to see if they can provide relevant data for the mapping portion of 

MAVNATT.   

 
Figure 7.  Zenmap Interface on Mac OS X 

e. Mapping Summary 

This section briefly described the standard protocols of the Internet Protocol suite 

and how the default protocol characteristics form the basis of most mapping and 

monitoring solutions, it further explained SNMP and its applicability to network mapping 

as well as security concerns, and lastly it discussed two tools that demonstrate capabilities 

required by MAVNATT in its ability to map a network topology and describe it into a 

standardized format. The next section discusses network awareness and monitoring tools. 

Some of these tools have integrated mapping capabilities that are specific to that 

application and further advance mapping techniques that could be useful in MAVNATT. 



 19 

2. Awareness 

Network awareness is the process of providing a timely and relevant assessment 

of the network to the network administrator. In the context of this thesis, network 

awareness falls under the larger umbrellas of network management and network 

monitoring. Network management is classified into five areas by the ISO 

Telecommunications Management Network framework:  Fault Management, 

Configuration Management, Accounting Management, Performance Management, and 

Security Management [19]. Network monitoring is a function that supports network 

management by collecting information from network devices to specifically address 

performance, fault, and accounting management areas [13]. The intended goal of network 

awareness with respect to MAVNATT aligns with fault management and fault 

monitoring. Specifically, network awareness intends to provide visualization of the 

network topology and fault detection capabilities in order to enhance situational 

awareness to the network administrator.  

Network awareness is critical for network administrators in both garrison and 

tactical environments.   These network administrators need quick and reliable status 

updates of the devices of their network throughout the network tasks of establishment, 

operations, and teardown. In tactical operations, the cycle of these tasks is much more 

frequent than civilian or garrison counterparts. Similar to the requirement for network 

maps, network awareness allows network administrators to respond quickly to network 

faults and changes. 

This section discusses the common industry network management suites that 

provide network monitoring and network awareness capabilities. In general, network 

management suites have their own version of a mapping tool that will be briefly 

mentioned for each suite, but these tools do not differ substantially from the tools 

identified in the previous section and will not be discussed in detail. 

a. SolarWinds Network Performance Manager 

SolarWinds Network Performance Manager (NPM) is the only network-

monitoring tool authorized on USMC networks, which is why it is considered in this 



 20 

survey. SolarWinds NPM is a commercial grade network management suite that provides 

a full-featured monitoring system. It is primarily built upon SNMP and Windows 

Management Instrumentation (WMI) protocols for administration and features a web-

based visualization interface that provides real-time monitoring and statistics for network 

management. Figure 8 demonstrates the SolarWinds NPM interface. SolarWinds has 

many advanced features that provide network administrators with a clear understanding 

of all aspects of their network. It also allows for customizable interfaces and reports. 

Despite SolarWinds NPM complexity, it is still an intuitive program to use [20].  

 
Figure 8.  SolarWinds NPM 11.5 Interface, from [21] 

SolarWinds NPM meets all expectations to provide situational awareness for 

network administrators. In addition to its network performance and audit monitoring, it 

also provides auto-discovery and auto-configuration capabilities as long as the network 

devices have been configured for SNMP or WMI. SolarWinds NPM utilizes Network 

Sonar, its integrated mapping tool, to accomplish this task. Network Sonar utilizes ICMP 

ping as well as credential-based SNMPv1/v2/v3, WMI, and VMware protocols for its 

auto-discovery and mapping capability [22]. 



 21 

SolarWinds NPM is a powerful solution for network administration, management, 

and monitoring. It is heavily integrated with Microsoft and VMware products, both of 

which have strong positions in the DOD. SolarWinds NPM is far from a lightweight 

solution, requiring a Windows 2003 or greater server with Microsoft SQL server 

installed. Also, the SolarWinds pricing structure is based on network “elements” being 

monitored, starting with 100 elements at $2795. 

b. Nagios 

The Naval Postgraduate School Information Technology and Communications 

Services (ITACS) department utilizes Nagios for their network monitoring solution. 

Nagios is an open source network monitoring solution that was written in the C 

programming language and runs on Linux and Unix based systems. All provisioning is 

based around the Nagios Core application, a powerful backend solution for network 

management. Nagios XI is a commercial offering that is built around the Nagios Core 

and provides a more refined interface and better usability. Nagios Core and Nagios XI are 

both extendable with plugins that provide many network management tools including 

frontend solutions and network discovery. This modular approach makes Nagios very 

flexible and scalable [23]-[25]. Figure 9 demonstrates the Nagios web-based interface. 

 
Figure 9.  Nagios Interface, from [26] 



 22 

Nagios Core and Nagios XI are as capable as other commercial systems for 

network monitoring, and it is more cost effective. Some limitations of Nagios include its 

reliance on a Linux/Unix-based host system since Linux/Unix are difficult to inject into 

the DOD networks due to the limited training of network administrators on Unix-based 

systems. The system is also antiquated and in need of a systematic overhaul to continue 

to compete with commercial systems.   

c. OpenNMS 

OpenNMS is another open source network-monitoring solution that is utilized in 

industrial and academic environments. It is written in the Java programming language 

and is capable of running on all major operating systems. OpenNMS is capable of all 

network monitoring areas and can also perform integrated network discovery with 

SNMP, LDAP, ICMP, SSH, and other protocols [24], [27], [28]. Figure 10 demonstrates 

the OpenNMS interface. 

 
Figure 10.  OpenNMS Interface, from [27] 

OpenNMS is as capable as the other reviewed network monitoring tools. It 

provides more usability to the network administrator than Nagios [24]. It is also more 

capable of being utilized on DOD networks because it can be run on a Windows-based 



 23 

platform. Its largest drawback is that it is difficult to install since it does not provide a 

single executable module and must be compiled on the host computer. 

d. Awareness Summary 

This section covers three network-monitoring solutions available in the 

commercial and open-source domains. These network-monitoring tools are fully capable 

of providing situation awareness to the network administrator. Additionally, many of 

these solutions provide integrated mapping capabilities, though these maps are not 

provided in an open, distributable format. We surveyed these systems and provided a 

brief summary in Table 1. SolarWinds provided the easiest solution to implement and 

OpenNMS provided the most cost effective. The shortcoming for these complex network-

monitoring tools is that they are not tailored for the tactical environment. They are 

heavyweight solutions that require robust servers with database access; thus, they do not 

meet the lightweight needs of a tactical network administrator. Secondly, none of these 

systems are designed to integrate with virtualization software for the purposes of training, 

though some integrate for the purposes of monitoring virtual devices.    In general, 

network-monitoring systems provide more capability than required for maintaining 

network awareness in tactical environments and do not meet the intent of MAVNATT. 

However, the foundation of these solutions and the open-source code can provide a 

direction that the MAVNATT awareness tool can utilize in its design. 

Table 1.   Awareness Tools Summary 

 SolarWinds NPM Nagios OpenNMS 
Host OS Platform Windows Server Unix/Linux All Major OSes 
Cost $2795 (100) Free (Paid Available) Free 
GUI Yes, Web-based Yes, CGI Web-based Yes, Web-based 
Mapping Yes  

(ICMP, SNMP, 
WMI) 

Yes 
(Plugin Dependent) 

Yes 
(ICMP, SNMP, 

WMI, LDAP, SSH) 
 



 24 

3. Virtualization 

Virtualization tools provide the ability to create an image of network devices. 

These virtualized devices can then be used for evaluating the effects of device changes on 

the entire virtualized network and, by extension, the actual network.   In the context of 

this thesis, virtualization is central to providing a training environment for the network 

administrator.   

It is important to understand the differences between virtualization tools in order 

to better understand the virtualization solutions for MAVNATT. There are two main 

types of virtualization solutions:  type-I and type-II hypervisors [29]. 

Type-I hypervisors run directly on the host’s hardware to control the hardware 

and to manage guest operating systems. For this reason, they are sometimes called bare 

metal or native hypervisors; they provide full virtualization [29]. VMware ESXi, Citrix 

Xen Server, and Microsoft Hyper-V are examples of type-I hypervisors. These solutions 

are “headless,” requiring another computer to serve as a front-end and allow 

administrator interaction with the hypervisor to install, operate, and maintain the virtual 

machines. Type-I hypervisors do not provide any user space for applications. Therefore, 

in order to utilize an application like MAVNATT, we would have to install and run the 

application on a virtualized machine within the hypervisor. These two problems provide a 

level of complication that does not support the lightweight solution that MAVNATT is 

intended to be. 

Type-II hypervisors run on a conventional operating system just as any other user 

application. Type-II hypervisors are called hosted hypervisors and provide para-

virtualization, meaning they abstract guest operating systems from the host operating 

system, but the guest knows it is running in a virtualized environment [29]. VMware 

Fusion, Kernel-based Virtual Machine (KVM), and VirtualBox are examples of type-II 

hypervisors. 

An extension of type-II hypervisors is the container-based virtualization that is 

currently found on Linux operating systems. The host operating system running a kernel-

based hypervisor solution shares its architecture and kernel version to the guest operating 



 25 

systems to provide the guest its own process and network space instead of creating a full-

fledged virtual machine. These containers do not have the overhead of a regular type-II 

hypervisor and are therefore extremely fast and efficient. The disadvantage is that the 

guest operating systems can only be of the same kernel-base has the host. Windows, Mac 

OS X, and other non-Linux operating systems cannot run in a container-based solution. 

Linux Containers (LXC), User Mode Linux (UML), and OpenVZ are examples of these 

container-based solutions.  

From these descriptions we highlight the following observations: 

• Type-I hypervisors require additional frontend resources and increased 
complexity to integrate the different network elements.  

• Type-II hypervisors require many resources on the host system but 
provide a lighter-weight solution than type-I hypervisors.  

• Container-based solutions are the most efficient and the lightest-weight 
solution but they cannot run Microsoft Windows because container guest 
OSs must utilize the same kernel version.    

As type-II hypervisors are the most lightweight virtualization solution available 

and Microsoft Windows is the primary operating system family on DOD networks, this 

section will survey leading type-II hypervisors capable of hosting Microsoft Windows 

operating systems. 

a. VirtualBox 

VirtualBox is a type-II hypervisor that is capable of running on both 32-bit and 

64-bit Windows, Linux, and Mac host operating systems computers. It can run both 32-

bit and 64-bit Windows and Linux guest computers. It is compatible with many virtual 

machine formats. VirtualBox is written in C++ and is very well documented. It provides 

a comprehensive software development kit (SDK), which allows for integrating every 

aspect of VirtualBox with other software systems written in Java, Python, C, C++ and 

other languages [31], [32]. Figure 11 provides a sample image of the VirtualBox 

interface. 



 26 

 
Figure 11.  VirtualBox Interface on Windows, from [30] 

b. VMware Fusion 

VMware Fusion 7 is a type-II hypervisor that is capable of running on both 32-bit 

and 64-bit Windows, Linux, and Mac host operating systems. It can also run both 32-bit 

and 64-bit guest virtual machines of Windows, Linux, and Mac operating systems, as 

well as many other operating systems. VMware Fusion is compatible with the VMware 

VIX API, which allows integration of C-based applications [33], [34]. Figure 12 

illustrates the VMware Fusion 7 interface. 



 27 

 
Figure 12.  VMware Fusion 7 Interface, from  [35] 

c. Kernel-Based Virtual Machine (KVM) 

Kernel-Based Virtual Machine (KVM) is a type-II hypervisor that is capable of 

running on both 32-bit and 64-bit Linux host operating systems. It can run both 32-bit 

and 64-bit virtual machines of Windows and Linux guest operating systems. KVM is 

written in C and utilizes a robust virtualization API, libvirt, which is also written in C 

[36]. Figure 13 provides a sample image of the KVM interface. 



 28 

 
Figure 13.  KVM Interface 

d. Virtualization Summary 

This section discusses the differences between type-I, type-II, and container-based 

hypervisors. As the intent of MAVNATT is to provide a lightweight tool to the tactical 

network administrators, type-II hypervisor-based tools are most appropriate. We 

surveyed three industry-leading type-II hypervisors -- VirtualBox, VMware Fusion, and 

KVM -- based on the requirements to be able to run Microsoft Windows, the most widely 

used operating system on DOD networks. All these hypervisors have APIs that support 

integration with other applications. Table 2 summarizes the virtualization solutions.    

  



 29 

Table 2.   Virtualization Tools Summary 

 VirtualBox VMware  KVM 
Host OS Platform All Primary OSes All Primary OSes Linux 
Guest OS Platforms All Primary OSes All Primary OSes Windows/Linux 
Cost Free $70 (one-time fee) Free 
API Integration Yes Yes Yes 
 

4. Network Simulators 

A network simulator is a type of application that models a computer network and 

predicts its behavior. This research will review network simulators because they closely 

relate to two MAVNATT functional areas -- mapping and virtualization. Network 

simulators can use both GUI and command line interfaces; our focus is on GUI-based 

solutions because they provide a level of awareness on the network topology and status.    

Network simulators also capitalize on virtualization techniques identified in the previous 

section.   

a. Graphical Network Simulator (GNS3) 

Graphical Network Simulator (GNS3) is an open-source graphical network 

simulator that was created to support training for Cisco and Juniper routers, as well as 

open-source router software running in virtual machines. GNS3 integrates with many 

type-I and type-II hypervisors that provide virtual network devices for its network 

simulation. GNS3 provides a variety of prepared open-source virtual appliances, and 

users can create their own. GNS3 is written in Python [37]. Figure 14 demonstrates the 

GNS3 interface. 



 30 

 
Figure 14.  GNS3 Interface, from [37] 

b. Common Open Research Emulator 

Common Open Research Emulator (CORE) is also an open-source graphical 

network simulator. The Naval Research Lab Networks and Communication Branch 

maintain CORE. It is built upon Linux as a host platform and uses the network 

namespace functionality in Linux containers (LXC) as a virtualization technology. This 

allows CORE to start up a large number of virtual machines quickly. CORE supports the 

simulation of fixed and mobile networks. CORE is open-source, written in Python, and it 

has a well-documented API [38], [39]. Figure 15 depicts the CORE interface. 



 31 

 
Figure 15.  CORE Interface, from [38] 

c. Netkit 

Netkit is a command-line based simulation tool that uses user-mode Linux (UML) 

to create the virtual machines. Since the host system uses UML, all client virtual systems 

must be Linux-based with the same Linux kernel as the host, meaning it cannot run 

Windows-based virtual machines. Netkit utilizes pre-formatted labs to automatically 

generate the virtual machines and connections. There is a GUI plugin that can visualize 

these labs. The application has not been updated since 2011, but using the application 

demonstrates a very capable concept of employment. Netkit is open-source, written in C 

shell script, and has third-party APIs that generate Netkit labs [40]. Figure 16 shows the 

Netkit interface. 



 32 

 
Figure 16.  Netkit Interface, from [40] 

d. Network Simulator Summary 

Network simulators demonstrate their utility as training and evaluation tools. 

Netkit is interesting due to its ability to use third-party applications to automatically 

generate labs and virtualized networks, but it lacks developer support, relies on UML that 

does not support Microsoft Windows, and has limited API support. CORE has a clean 

interface and is easy to use, but its reliance on LXC means it also lacks the ability to 

virtualize Microsoft Windows. GNS3 is the dominant solution and is a proven industry 

leader in network simulation.   Table 3 summarizes the Network Simulation tools.    

Table 3.   Network Simulation Tools Summary 

 GNS3 CORE Netkit 
Host OS Platform All Primary OSes Linux Linux 
Virtualization Host VirtualBox, Qemu LXC UML 
Virtualization Guest All Primary OSes Linux Linux 
Virtual Routers Cisco, Juniper, 

Quagga, Linux-
Based 

Quagga, Linux-
Based 

Quagga, Linux-
Based 

Cost Free Free Free 
API Yes Yes Yes, 3rd Party 
 



 33 

5. Current Tools Survey Summary 

The purpose of this survey was to identify capabilities that are critical to tactical 

level network operations. We discovered that the overall functionality that is critical to 

tactical network operations could be collapsed into two major application areas:  network 

monitoring and network simulators. 

Network monitoring tools, like SolarWinds, provide an excellent visualization 

tool that improves network administrator situational awareness and understanding of the 

network. These tools poll the network at set intervals to provide fault, performance, and 

accounting status. Network monitoring suites also have integrated mapping tools that 

automatically discover the network. They conduct both monitoring and discovery through 

multiple network management protocols like ICMP, SNMP, and WMI. The survey 

discovered that network-monitoring tools are not utilized for network training and 

evaluation, and they do not integrate into virtualization hypervisors and tools. Without 

the capability to conduct network training in a virtual environment, network-monitoring 

tools cannot be used as a single-source solution for MAVNATT. 

Network simulation tools, like GNS3, provides an excellent visualization tool, as 

well as an integrated virtualization platform that improves network administrators a 

capability to be trained and evaluated on networking equipment. All network 

administrator-training events could also be conducted on a network simulation tool. 

Generally, network simulators do not have import and auto-generation capabilities. The 

only exception was Netkit. Therefore, network simulations are manually generated in the 

GUI and linked to the virtual or emulated devices. Network simulators can be integrated 

into a live network, but they are not designed to overlay live and virtual components that 

represent the same terminal device. Network simulators are also unable to provide 

situational awareness to the network administrator. The lack of integrated network 

awareness capabilities, the lack of auto-generation of network components in 

virtualization solutions, and the inability to overlay live and virtual components within 

the GUI demonstrates that network simulators are unable to be used as a single-source 

solution for MAVNATT.   



 34 

Commercial and academic solutions were surveyed and found to be unable to 

singularly meet the identified requirements to support tactical level network operations. 

Figure 17 identifies the gap between network monitoring tools and network simulation 

tools. This is the gap that MAVNATT is intended to fill, covering both the capabilities of 

network monitoring tools and network simulation tools. The next chapter outlines a 

framework and methodology to integrate those capabilities identified during this survey 

of commercial solutions. 

 
Figure 17.  MAVNATT Model compared to Network Monitoring and Network 

Simulation Tools 

D. SUMMARY  

This chapter presented training requirements for military network administrators, 

the current tools in industry and academia, and proposed tools to be utilized as the 

framework for MAVNATT. The ability to train network administrators in operational 

environments is lacking and a serious gap exists at the tactical level. In order to fill this 

gap, we reviewed commercial and academic solutions. The review identified that network 

monitoring suites and network simulators provide the functionality desired in the 

MAVNATT project, but there is not a system that combines them into a single 

lightweight solution.   



 35 

In the next chapter, we design a framework and architecture based on the tools 

surveyed in order to integrate the MAVNATT functional areas:  mapping, awareness, and 

virtualization.  

 



 36 

THIS PAGE INTENTIONALLY LEFT BLANK 



 37 

III. DESIGN AND METHODOLOGY 

A. OVERVIEW 

The previous chapter discusses commercial solutions for network administrators 

and it identifies that they do not meet requirements of a lightweight system that supports 

operations and training in a tactical environment. With this in mind, we have developed 

the MAVNATT conceptual model, depicted in Figure 18.  

 
Figure 18.  MAVNATT Conceptual Model 

In this chapter, we detail outline our intentions for the MAVNATT architecture 

and framework. We then identify the design for the framework components, review 

available solutions, and provide component level prototypes to demonstrate desired 

capabilities.  

B. MAVNATT ARCHITECTURE 

Many network administration tools exist that support both operations and training, 

but not in an integrated application. Network monitoring tools and network simulation 

tools are the application types that best meet the requirements outlined in the conceptual 



 38 

model. Network monitoring tools provide awareness and mapping capabilities while 

network simulation tools provide awareness and virtualization capabilities. The combined 

capabilities of these tools align to the previously defined functional areas:  mapping, 

awareness, and virtualization.  

The MAVNATT architecture builds its module base from these functional areas 

to meet the operational and training needs for tactical network administrators. This 

section briefly discusses the objectives and requirements for each module within the 

MAVNATT architecture. 

1. Mapping 

Mapping provides a network administrator the capability to understand the 

physical layout, composition, and interconnectivity of the network. 

a. Objectives 

• The main objective of the mapping module is to increase the network 
administrator’s situational awareness by providing a complete and 
accurate view of the physical topology of the network in order to maintain 
availability and security of the network. 

• The secondary objective of the mapping module is to support network 
management by being able to verify a physical network topology against 
the planned network topology, allowing the network administrator to 
understand the effect of network changes. 

b. Requirements 

• The module must communicate with the awareness module. Specifically, 
it must be able to accept arguments, including an existing network 
topology. It must return a full or incremental network topology. 

• The arguments should include, but are not limited to, elevated privileges, 
scan types such as full or incremental, and scan modes such as passive or 
active.  



 39 

2. Awareness 

Awareness provides a visual representation of the network and a status of network 

devices; it also provides a platform to visualize training scenarios for the network 

administrator.      

a. Objectives 

• The main objective of the awareness module is to enhance a network 
administrator’s situational awareness by providing a visualization platform 
to display the network topology and status of network devices.  

• The secondary objective of the awareness module is to provide a 
capability to overlay virtualized devices to support network administrator 
training and evaluation. 

b. Requirements 

• The module must be able to import a network topology and display it. 

• The module must be able to manually generate a network topology and 
display it. 

• The module must provide network device availability status, at minimum. 

• The module must communicate with the mapping module. Specifically, it 
must be able to call the module with appropriate arguments to get a full or 
incremental network topology, and the module must be able to display it. 

• The module must communicate with the virtualization module. 
Specifically, it must be able to provide the virtualization module with a 
description of a network topology to be virtualized. It should accept a set 
of information that allows the awareness module to overlay and integrate 
virtual devices to support training and evaluations.  

3. Virtualization 

Virtualization provides a completely partitioned environment that allows network 

administrators to train and be evaluated without interfering with the operational network.  

• Objectives 

• The main objective of the virtualization module is to integrate 
MAVNATT with a hypervisor that can support the virtualization of a 
network topology that is logically partitioned from the operational 
network. 



 40 

a. Requirements 

• The module must communicate with the awareness module. Specifically, 
it should receive a network topology that is to be virtualized and it should 
return a set of connectors to those virtual devices. 

• The module must ensure the virtual devices are unable to interfere with the 
operational network. 

• The module must infer a virtual device whenever a full specification is not 
available. 

4. Architecture Summary 

This section briefly covered each of the modules in the MAVNATT architecture 

and described how they are expected to operate as a module within the principal system. 

This modularity within the architecture allows for a systematic approach to the design 

and development of the MAVNATT system. 

C. MAVNATT FRAMEWORK 

The MAVNATT framework identifies the components necessary to integrate the 

three modules that compose the MAVNATT architecture. Analysis of the objectives and 

requirements of the MAVNATT architecture modules allow us to determine the 

components of the MAVNATT framework by identifying elements of the modules that 

are dependent on external modules or users. These framework components are important 

to providing consistency for the data exchanged between modules, input and output to the 

user, and usability of the system. The components are identified as follows:  network 

topology format, programming language, GUI, and virtualization platform API. Figure 19 

visually represents the framework and its components. 



 41 

 
Figure 19.  MAVNATT Framework 

The framework provides the integration points between the three architecture 

modules, which align to our functional areas. The following sections detail each 

framework component as well as develop a component level prototype to demonstrate the 

desired capability.       

D. NETWORK TOPOLOGY FORMAT  

MAVNATT requires a file format component capable of describing the network 

topology. This format is used to represent the topology among the three MAVNATT 

modules. Figure 20 depicts the integration points of the network topology format in 

relation to the functional areas. The mapping functional area can discover the network 

and save it to this format in order to pass it to the awareness module. The awareness 

functional area can use it to store information about the status of the network it is 

monitoring. The virtualization functional area can use it to describe the network to be 

virtualized for training or evaluation. This format also provides network administrators 

the ability to easily create, save, export, and exchange a network topology up and down 

the military hierarchy. A common network topology format simplifies prototype 

development and allows MAVNATT to maintain modularity. This section details 

objectives, reviews three formats considered for this component, and establishes a 

component prototype. 



 42 

 
Figure 20.  MAVNATT Network Topology Format Integration 

1. Network Topology Format Objectives  

• The network topology format must be human readable in order to support 
the manual interpretation of a network topology, integration into network 
operations planning documents, and to facilitate the education and training 
of network administrators. 

• Implementations must provide the capability of reading the network 
topology format into a usable representative object that allows for the 
addition and deletion of topology information.  

• Implementations must provide the capability of writing the representative 
object to file in the network topology format. 

• The topology format should be extendable in order to support the 
recognition of all current and future network topology devices including:  
computers, switches, routers, VOIP, printers, mobile devices, etc. 

• The topology format should allow for full and partial network 
representation. This allows network administrators to receive and interpret 
a full network topology from the mapping module and it allows the 
virtualization module to receive and interpret a small portion of the 
network to be virtualized, which reduces resource requirements for 
training scenarios.  

2. Network Topology Format Review 

We review three graph formats as candidates for the network topology framework 

component based on industry and research standards:  Neo4j, JavaScript Object Notation 

(JSON), and GraphML.   



 43 

a. Neo4j 

Neo4j is popular in industry and it is currently being utilized by 

MARFORCYBER to support the cyber-centric common operational picture. Neo4j is a 

graph database that utilizes a Java Virtual Machine based NOSQL database server to 

store data structure as graphs rather than tables. Neo4j is available in a free community 

version and a paid enterprise version. Neo4j’s strengths lie in its relational capabilities. It 

can derive relations in larger amounts of data. It is a scalable and dynamic environment 

with very capable APIs for all principal programming languages. It also natively imports 

many other graph formats, including JSON and GraphML.   However, Neo4j’s strength is 

also its principal shortfall for MAVNATT. MAVNATT is intended to be a lightweight 

system. Adding additional overhead in the form of a database server complicates the 

operating requirements for the network administrators and it increases the complexity in 

developing and delivering a prototype. For these reasons, we will not pursue Neo4j 

further in this research. Nonetheless, Neo4j may warrant investigation after the initial 

prototype is established [41], [42]. 

b. JSON Format 

JavaScript Object Notation, JSON, is an open Internet standard for a lightweight, 

text-based, language-independent data interchange format. JSON defines a small set of 

formatting rules for the portable representation of structured data. Its design makes it very 

fast compared to XML formats at referencing and exchanging data, but it is also very 

resource intensive on the host system. JSON’s main shortfall as a candidate for 

MAVNATT is that it is not specifically utilized to describe a network or graph; it only 

describes the way data is stored and exchanged. For this reason, JSON could improperly 

tag data that is specifically meant to describe a network topology [43], [44]. 

c. GraphML Format 

GraphML is an XML-based file format for graphs that comprehensively describes 

the structural properties of a graph and has simple attribute extension mechanisms. As it 

is XML-based, it is inherently an open Internet standard. GraphML resulted from the 

joint effort of the graph drawing community to define a common format for exchanging 



 44 

graph-structure data. GraphML provides a strict definition of graph elements to represent 

the network topology [44], [45]. 

d. Network Topology Format Survey Summary 

Neo4j provides the most innovative solution for a topology format, but it is a 

heavyweight solution requiring a database backend. We choose not to pursue Neo4j, at 

this point, because it does not meet the lightweight requirements for the MAVNATT 

system. JSON and GraphML are more simplistic and lightweight solutions that will allow 

for faster prototyping and deployment. 

3. Network Topology Format Component Prototypes 

The JSON and GraphML prototypes will both be generated in the following 

environment: 

• OS:  Mac OS X 10.10.3 

• IDE:  NetBeans IDE 8.0.2 with the community Python Plugin 

• Python:  Version 3.4 

• NetworkX:  Version 1.9.1 - NetworkX is an open-source package 
developed by the Los Alamos National Laboratory for the study of graphs. 
In our prototype, it is used to allow us to import and export JSON data, 
read and write GraphML files, and it generates a graph object that 
represents nodes and edges. 

• JSON File:  A simple JSON file with nodes and edges in the proper format 
to be imported by NetworkX. 

• GraphML File:  A simple GraphML file with nodes and edges in the 
proper format to be imported by NetworkX. 

a. JSON Prototype 

NetworkX does not read the JSON directly from file. Instead, the JSON file must 

be loaded into a string and then NetworkX imports the string into a NetworkX graph 

object. Once the graph object is created, the JSON format is no longer required. The 

graph object consists of nodes, edges, and attributes. These are easily modified, added, 

and removed with NetworkX methods. The graph object can then be saved in JSON 



 45 

format by converting the NetworkX graph object to a string and saving it to file. The 

prototype is capable of reading and writing JSON formats. 

b. GraphML Prototype 

NetworkX natively reads GraphML from file into a NetworkX graph object. The 

NetworkX graph object is used for storing edge and node information, just like the JSON 

implementation. NetworkX can then natively save the graph object to GraphML file 

format. The prototype is capable of reading and writing JSON formats. 

4. Network Topology Format Component Summary 

The network topology format as a component of the MAVNATT framework 

provides the ability to communicate information among all three of the MAVNATT 

modules. The JSON and GraphML prototypes successfully read and write the topology. 

Both prototypes also demonstrated extendibility by allowing for the addition, deletion, 

and modification of topology edges and nodes. It is also extendable by allowing 

additional attributes to be added to the data structure. Both formats are human readable, 

though GraphML is slightly better because the format allows more information to be 

presented to the reader. In conclusion, both JSON and GraphML meet the network 

topology format requirements and successful prototyping. 

E. PROGRAMMING LANGUAGE   

MAVNATT requires a programming language that standardizes the libraries, 

packages, and APIs among all three MAVNATT modules. A common programming 

language also allows for rapid development of framework components and architecture 

modules. Figure 21 depicts that the programming language supports all the MAVNATT 

components and the overall architecture. 



 46 

 
Figure 21.  MAVNATT Programming Language Integration 

This section will detail programming language objectives and review three 

programming languages considered for this component. The programming language 

component is not a standalone component but rather is integral to, and common among, 

the other components. Therefore, it will not be individually prototyped, but it will be used 

in other component prototypes. 

1. Programming Language Objectives  

• The programming language must be capable of implementing the libraries 
and APIs required for other framework and module purposes, including: 
graph formats, GUI, and virtualization APIs. 

• The programming language must be portable, supporting a “write once, 
run anywhere” methodology to be run on multiple platforms, including 
Windows, Linux, and Mac. 

• The programming language must support rapid development for the 
purposes of generating component and modular prototypes in support of 
the overarching MAVNATT project. 

2. Programming Language Review   

We review three programming languages as candidates for the framework 

component based on industry standards and author familiarity:  C++, Java, and Python.  

a. C++ 

C++ allows for low-level memory manipulation and is the core of many modern 

object oriented languages. It excels at performance-critical applications. However, C++ 

strengths do not outweigh its weaknesses in the area of rapid prototyping. It has been 

demonstrated that C++ code takes longer to produce, is more error prone, and its 



 47 

improper use can introduce more security risks to the system than the other languages. 

Further, it must be explicitly compiled for each target machine implementation. C++ will 

not be pursued MAVNATT.  [46]-[48] 

b. Java 

Java is a high level, interpreted, and object-oriented programming language that is 

capable of being compiled into packaged byte-code that can execute on any system with a 

Java Virtual Machine (JVM) regardless of physical computer architecture, making it 

platform independent. The JVM provides a single target platform that simplifies 

prototyping and deployment of software. Since it abstracts away some of the complexity 

of C/C++, the languages upon which Java was built upon, it allows programmers to 

increase their productivity. Java does have an integrated graphical user interface API and 

a large number of available packages. Research into the object-oriented class structures, 

ease of programming, and error reduction demonstrates that Java is preferable to C++ 

[46]–[48]. 

c. Python 

Similar to Java, Python is a high level, interpreted and object-oriented 

programming language. Python applications can be easily distributed and run on any 

system with a Python interpreter. It abstracts away from the programmer much of the 

complexity of C++ and Java, allowing the programmer to be more productive by quickly, 

precisely, and accurately creating applications. Python is also object-oriented and has a 

strong standard library, including an integrated graphical user interface API. Research 

further demonstrated that Python was among the top languages for the most error-free 

and most rapidly producible code [46]-[48]. 

d. Programming Language Review Summary 

C++ is widely recognized for its speed and access to low-level memory, but it 

does not support rapid development and platform portability. Java and Python both 

support platform portability, rapid development, and a wide range of available APIs to 

support requirements. Java is more widely deployable than Python because the 



 48 

application can run on any platform with the Java Virtual Machine, whereas Python is 

more closely tied to the OS implementation of its Python interpreter. Python is better than 

Java in rapid development capabilities because its use results in fewer code errors. 

3. Programming Language Component Summary 

The programming language as a component of the MAVNATT framework 

provides the ability to utilize standardized libraries, packages, and APIs among all three 

of the MAVNATT modules. Individual prototypes for this component were not 

developed, but both Python and Java are used to prototype other components required for 

the MAVNATT framework. In conclusion, both Java and Python provide flexibility by 

supporting rapid code development, platform flexibility, and support for many packages 

and APIs that support MAVNATT framework components and module development. 

F. GUI 

The MAVNATT framework requires a GUI to provide a visualization tool for the 

network administrator. MAVNATT must be capable of representing both operational and 

training environments. A GUI-based visualization tool, vice a console-based system, 

provides more situational awareness of the physical and virtual network topologies, 

network device faults, and training scenarios. GUIs simplify information necessary for 

network administrators to make decisions and therefore increase productivity, especially 

among novice users. Figure 22 demonstrates that the GUI is heavily tied to the awareness 

module, but it also must represent information from both the mapping and virtualization 

modules.    

 
Figure 22.  MAVNATT GUI Integration 



 49 

This section will detail GUI objectives, survey three GUIs considered for this 

component, and establish a component prototype. Figure 23 provides a mockup of the 

projected GUI interface, which demonstrates the desired simplicity and lightweight 

interface. 

 
Figure 23.  Mockup - MAVNATT GUI 

1. GUI Objectives  

• The GUI must be simple and intuitive, abstracting complexity away from 
the network administrator while increasing situational awareness. 

• The GUI must be capable of representing the network topology format.  

• The GUI must visualize a composition of both the live and virtual 
networks.  

2. GUI Review 

We survey three GUI APIs as candidates for the framework component based 

upon integration with our selected programming languages:  Java Swing, Python Tkinter, 

and Python Qt. 

a. Java Swing GUI 

Java’s Swing API provides a set of components and widgets to provide GUI 

functionality to Java-based applications. Swing is part of the Java Foundation Classes that 

form Java’s graphical framework. It is deployable on all modern operating systems and can 

provide the look and feel of that OS or a common look and feel across all OSes [49]. 



 50 

b. Python Tkinter GUI 

Tkinter is a Python GUI API that is part of the standard Python library. This 

means that any system that can run Python can run Tkinter applications. Tkinter stands 

for “Tk interface” which derives from the windowing toolkit of the Tool Command 

Library (Tcl). Tcl/Tk combined into a simple method for creating cross-platform GUI 

applications, which Python extended for its GUI interface. Tkinter provides the core 

components of a graphical user interface, but it is recognized as not being as elegant as 

other GUI solutions [50]. 

c. Qt GUI 

Qt is a cross-platform GUI API that provides the ability to create commercial 

grade interfaces. Qt is more complex than Tkinter, but it also has more widget 

capabilities. Third party applications have been designed to generate Qt GUIs that can be 

imported into applications. Qt has two licensing methods, LGPL and Commercial, which 

induces some complexity into the direction MAVNATT could go in future prototypes 

[51].  

d. GUI Review Summary  

The GUI framework component is essential to the performance and success of the 

MAVNATT system. Swing and Tkinter provide integrated solutions for prototypes 

developed in Java and Python without the requirement for external libraries. Qt provides 

a more modern and clean interface over Tkinter, but it has licensing requirements and 

relies on installation of external libraries. Qt will not be pursued for prototyping.  

3. GUI Component Prototype 

The GUI component prototype will be developed in the following environment: 

1. OS:  Mac OS X 10.10.3 
2. IDE:  NetBeans IDE 8.0.2 with the community Python Plugin 
3. Python:  Version 3.4 with Tkinter  



 51 

a. Python Tkinter GUI Prototype 

The Python Tkinter GUI prototype meets all designated component objectives. It 

provided a simple, lightweight, and intuitive interface that allowed for efficient depiction 

of a network topology. Figure 24 demonstrates the Python Tkinter GUI prototype.  

 
Figure 24.  MAVNATT GUI Component Prototype 

It was easy to generate widgets within the GUI that could be clicked and moved. 

Each item on the GUI canvas is issued an ID that can be used to change the attributes of 

that item including size and color. Shapes are not easy to change and would require 

deleting an item and adding a new one with a new ID. Compositing a layer that 

represents the virtual network topology for network administrator training and evaluation 

would be possible because of this. 

4. GUI Component Summary 

The GUI framework component is essential to the visualization of the network 

topology and providing the network administrator the ability to interact with the 

application. The GUI component prototype successfully established a simple and 

intuitive interface that represented a network topology. The interface is not as refined as 

production level applications, but the prototype demonstrated that built-in GUI 



 52 

capabilities of programming languages are sufficient. In conclusion, Python Tkinter 

meets the GUI component requirements and successful prototyping. 

G. VIRTUALIZATION API  

The most important component of MAVNATT is its integration into a 

virtualization platform. Without integrated virtualization, MAVNATT fails to provide a 

training platform to network administrators and does not set itself apart from a simple 

network management suite.   Virtualization also allows the architecture to overlay the 

physical topology without interfering with network operations. Figure 25 demonstrates 

that the relation between the awareness and virtualization modules. 

 
Figure 25.  MAVNATT Virtualization API Integration 

This section details the virtualization API objectives and establishes a component 

prototype. In Chapter II, we discussed VirtualBox and VMware and identified them as 

the most capable type-II hypervisor solutions for MAVNATT. For the purposes of our 

research and streamlining prototyping, we will use VirtualBox and its API because it is 

free, open source, and it has a comprehensive SDK that can be bound to both Java and 

Python programming languages [31], [32].   

1. Virtualization API Objectives    

• The virtualization API must automate all interaction with the hypervisor. 

• The virtualizing API must allow for the accessing of all virtual machine 
(VM) information from the hypervisor (i.e., name, network, hardware 
information, etc.). 



 53 

• The virtualization API must allow for cloning individual systems. This is 
critical to support rapid deployment of virtual networks in a tactical 
environment.  

2. Component Prototypes 

The Java VirtualBox API and Python VirtualBox API prototypes will both be 

generated in the following environment: 

• OS:  Mac OS X 10.10.3 

• IDE:  NetBeans IDE 8.0.2 with the community Python Plugin 

• Python:  Version 2.7 

• Java:  Version 8 update 45  

• VirtualBox Type-II Hypervisor: Version 4.3.26 r98988 

• VirtualBox:  Version 4.3  

a. Java VirtualBox API  

The Java VirtualBox API allows for two modes of operation, a simple object 

access protocol (SOAP) implementation and a cross platform component object model 

(XPCOM) implementation. In short, the SOAP implementation is a web-based remote 

procedure call. Whenever VirtualBox is installed, a web service runs in the background 

that accepts commands and executes them in the VirtualBox application. Conversely, 

XPCOM sends those commands directly to the VirtualBox application. Therefore, the 

XPCOM is much faster than SOAP and reduces overhead. After the package was 

properly installed, it The Java VirtualBox API prototype successfully meets our initial 

requirements.    

b. Python VirtualBox API  

The Python VirtualBox API has access to SOAP and XPCOM implementations. 

The Python VirtualBox API natively runs XPCOM without requiring system properties 

to be set and without much trouble importing the package. The coding of the Python 

implementation was less complex than Java. The Python Version 2.7 VirtualBox API 

prototype successfully meets our requirements.    



 54 

3. Virtualization API Component Summary 

The virtualization framework component is the most critical to the success of the 

MAVNATT system. Virtualization of the network topology provides the capability to 

train and evaluate network administrators. Complex architectures will be difficult to 

virtualize, but the VirtualBox API supports many of the tasks required for a successful 

production environment. In conclusion, both the Python and Java VirtualBox API 

implementations meet the virtualization component requirement and successful 

prototyping. 

H. COMPONENT PROTOTYPE SUMMARY 

This section identifies the framework components required to integrate the 

MAVNATT modules: network topology format, programming language, GUI, and 

virtualization API. Furthermore, prototypes of each framework component demonstrate 

the requirements and desired capability. GraphML and JSON both support network 

topology formats, though GraphML provides more information in its human readable 

format. Java and Python programming languages provide robust libraries, cross platform 

capability, and support rapid development and prototyping. Java Swing and Python 

Tkinter are integrated into their respective programing languages and demonstrate the 

ability to provide simple and intuitive interfaces to represent a network topology. Lastly, 

the Java and Python VirtualBox APIs both demonstrated the ability to automatically 

interact with the hypervisor and clone a virtual machine. Table 4 provides a summary and 

comparison of the framework components.  

Table 4.   Component Prototype Summary 

 Primary Alternate 
Topology Format GraphML* JSON 
GUI Python Tkinter  Not Prototyped 
Language Python Java 
Virtualization API Python API Java API 
   



 55 

Though GraphML was successful in providing baseline data for the network 

topology, it is recommended in following chapters that more advanced XML-based 

topology representations be researched or developed to support MAVNATT.  

I. SUMMARY 

This chapter presented the design MAVNATT architecture and framework. The 

architecture aligned to the three functional areas:  mapping, awareness, and virtualization. 

The framework identified components that are used to integrate the modules:  network 

topology format, programming language, GUI, and virtualization API. This chapter also 

provided framework component prototypes that demonstrated the individual component’s 

capabilities.    

 



 56 

THIS PAGE INTENTIONALLY LEFT BLANK 



 57 

IV. IMPLEMENTATION 

A. OVERVIEW 

The previous chapter discussed the architecture and framework proposed for 

MAVNATT. This chapter presents an integrated prototype that implements the 

architecture. The implementation describes the activity flow as it integrates the 

architecture and framework, and illustrates the desired capabilities.      

B. INTEGRATED PROTOTYPE 

An integrated prototype is required to clarify the direction taken for MAVNATT 

and to simulate the desired capabilities of an operational system. It is not intended to be 

the final solution, but builds upon the concepts of the architecture and framework by 

describing and demonstrating the interoperability between modules and operating them in 

a single environment. This section defines the prototype design and capabilities. 

1. Prototype Design  

The prototype uses the following environment: 

• OS:  Mac OS X 10.10.3 

• IDE:  NetBeans IDE 8.0.2 with the community Python Plugin 

• Network Topology Format:  GraphML Version 1.0 

• Programming Language:  Python Version 2.7 with Tkinter  

• GUI Library:  Python Tkinter from Python 2.7 

• VirtualBox Type-II Hypervisor: Version 4.3.26 r98988 

• VirtualBox API:  Version 4.3   

2. Prototype Capabilities 

The capabilities we present are identified to support the implementation in the 

next section. The architecture modules are mostly representative and rely heavily upon 

the work established with the framework components. 



 58 

• Mapping:  The mapping module is not implemented in this prototype; 
instead, its capability is demonstrated by importing a GraphML file 
representing a network topology into the awareness module. As mentioned 
in Chapter 3, this module is designed to generate a GraphML file that 
represents the real operational network. 

• Awareness:  The awareness module provides a GUI interface to link the 
separate modules. This capability is demonstrated by displaying the 
imported GraphML formatted topology within the GUI. It also provides a 
ping-based test on nodes to see whether or not the represented nodes are 
online and available.  

• Virtualization:  In the current implementation, the virtualization module is 
very limited. The virtualization capability is demonstrated by using a 
baseline configuration of a virtual machine to generate clones for each 
node in the network topology.   

C. IMPLEMENTATION 

1. Overview 

This section presents a systematic flow and step-wise approach describing 

implementation goals desired of the final product. The integrated prototype is used to 

demonstrate each of the steps to the reader with respect to the current implementation as 

well as a discussion of the desired full-scale implementation.    

2. Mapping 

The mapping module is designed to discover the network topology by using 

active and passive methods to identify network devices and connections. It generates a 

GraphML file to represent the network topology that is easily saved or transferred 

between modules. This GraphML description of the network topology represents nodes 

and edges. A node or edge has attributes that are identified by key-value pairs in XML 

format. Attributes can be added or removed from the node or edge, as long it is a data 

type recognized by GraphML and it is directly related to the entity; GraphML does not 

support nested data structures. Figure 26 is the GraphML network topology 

representation for this implementation.  



 59 

 
Figure 26.  GraphML Network Topology 

<?xml. vers1on;;;"1.8"" encoding;;••utf-8""7> 
<graphml xml.ns= .. h'ttp://graphml..graphdrawing.org/xml.ns" 

xml.ns:xsi="h't'tp://www.w3.org/2181/XMLSchema-ins1:ance11 

X5i:sc::hemaLocation= .. h1:'tp://graphml..graphdrawing.org/xml.ns 
http • //g raphm\, graphd rawing. org/xm\ns/1.. •tu raphm\, xsd"> 

<key attr. name•11 SDurceinterface11 attr.type•11String" for•" edge" id•"d911 /> 
<key at'tr. name= .. de.s'tinat:ioniP .. att:r~ type= .. string•• for= .. edge .. id= .. dB .. /> 
<key lilt'tr. name=11 des'tina1:ionin'terface11 at:'tr.type=""s'tring" for=" edge" J.d="d7"" ./> 
<key at'tr. name= .. sourc::e:IP .. att:r. type= .. string .. for= .. edge .. id= .. d6 .. /> 
-<key att r. name= .. x•• att r. type= .. 1nt.. for= .. node.. 1d= .. d5.. /> 
<key at't r. name= .. y•• a'tt r. 'type= .. int11 tor= .. node.. id=11d411 /> 
<key illt'tr. name=1"os•• attr.'type="stri.ng•• for="" node"" id=""d3" /> 
<key lilt'tr. name=11 device•• a'ttr.'type=11 string11 for=11node11 1.d=11d2" /> 
<key at:tr. name=11x 11 att:r.t:ype='"l.on;'" 'for=" node" .1d="d1" /> 
-<key att r. name= .. y•• att r. type= .. 'long.. 1'o r=" node" J.d=" dl"" /> 
<graph edgede'fau1t• 11 undirec::ted":»-

<node id=""rou'ter""> 
<da'ta key= 11d8"">24it</da'tlil> 
<data key=; .. d1"">381</data> 
<da'ta key=" 1d2"">router</da'ta> 
<da'ta key=""d3"">unknown<./da'ti!ll> 

</node> 
<node id=-11switch. syscon"> 

<data key=""dl"">181</data> 
<da'ta key=" 1d1"">4e8</data> 
<da'ta key= 11d2"">swi tch</da'ta> 
<data key=" 1d3"">unknown</data> 

</node> 
<node id::c11Swi'tch. c::oc""> 

<da'ta key=" 1d8"">188</data> 
<da'ta key= 11d1"":a-24it8</data:a­
<data key= 11d2"">sw1 tch</da'ta> 
<da'ta key=" 1d3"">unknown</da'ta> 

</node> 
<node 1d=""syscon1"1> 

<data keym""d411>24it8</dat:a> 
<data ke)'= 11d5"">351</data> 
<da'ta key= .. d2"">compu'te r</dat:a> 
<da'ta k.ey= 11d3""=--windows</da'tiil> 

</node> 
<node 1d=""syscon2"1> 

<da-ta kep 11dl"">281</data> 
<da'ta key= .. d1"">458</data> 
<da'ta key= 11d2"":a-compu'te r</dat:a:a­
<data key='"d3"">Windows</date> 

</node> 
<node id=""coc1""> 

<da'ta key= .. d8"">288</data> 
<data keym""d111>158</dat:a> 
<data keY=""d2"">unknown</date> 
<da'ta key=" 1d3"">unknown</da'ta> 

</node> 
<node 1d=""c::oc21"> 

<data key=; .. dl"">281</data> 
<da-ta kep 11d1"">251</data> 
<da'ta key= .. d2"">compu'te r</dat:a> 

<da'ta k.ey= 11d3""=--windows</da'tlil> 
</node> 
<edge source= .. router•• target='"swi.tch. syscon"> 

<da-ta key= 11d6"">1e. e. e I 1</dat:a> 
<da'ta key=" 1d7"">e'th8</dilta.> 
<da'ta keym 11d8"":a-1e. e. e. 2</dat:a> 
<data key=;""d9"">ethl</data> 

</edge> 
<edge source=11 rou'ter•• 'targe't=11swi'tch. coc 11> 

<data key="d6">1e.e .•. 1</data> 
<data key=""d7"">e"thl</dat:a> 
<data kep 11d8"">18. I.e I 3</data> 
<da'ta key=" 1d9"">e'thl</data> 

</edge> 
<edge sou rc::e= .. swi 'tt:h. sy5con"' t:a rget:= .. syscon1" > 

<data key=; .. d6"">1e.e.e~ 2</data> 
<da-ta key=""d7"">e'thl</data> 
<da'ta key= .. d8"">18. e. 8. 21</dillta> 
<da'ta keym""d9"":a-e'thl.</dlilta> 

</edge> 
<edge source= .. switch. syscon"' ta rget=11 syscon2" > 

<da'ta key= 11d6"">1e I e I. I 2</dat:a> 
<da'ta key=" 1d7"">e'th8</data> 
<data key= 11d811>14it. e ••. 22</dlilt:a> 
<data keY=""d9"">e'th2</data> 

</edge> 
<edge sou rce=11 swi 'tch. coc11 1:arge1:=" coc 1 11> 

<data key="d6">1e.e.e.3</data> 
<data key=;" 1d7"">ethl</data> 
<da-ta key= 11d8"">18. I.e I 6</dat:a> 
<da'ta key=" 1d9"">e'thl.</dillta> 

</edge> 
<edge sou rce=11 swi t:ch. coc"" target=" coc2"> 

<data key= .. d6"">1e .11. I I 3</data> 
<da-ta key=""d7"">e'thl</data> 
<da'ta key= .. d8"">18. e. 8. 7</dat:a> 
<data key=""d9"">e"th2</dlilt:a> 

</edge> 
</graph> 

</araphml> 



 60 

In this implementation the mapping module’s capability is modeled by importing 

a properly generated GraphML file that represents a network topology. The network 

administrator accomplishes this by using the mapping drop-down menu to import the file 

that the awareness module uses to generate and display the topology. In the full-scale 

implementation the network administrator would still be able import a topology, but he or 

she could also select active and passive methods to scan the real-world network for the 

awareness and virtualization modules.  

3. Awareness 

The awareness module acts as the interface for the network administrator in 

addition to displaying the topology and other information. Our implementation allows the 

user to interact with a GUI driven menu system to initiate actions with the rest of the 

modules. The unique idea behind the awareness interface is that it presents the actual 

topology for which the network administrator is responsible and it also serves as the 

platform to conduct training. This means that the administrator gets realistic training on 

the actual tools used in tactical environments.   

The first step in our implementation is loading the environment. The environment 

loads into a blank screen waiting for input from the network administrator. This interface 

uses a drop down menu on the side to represent each of the modules and a large canvas 

that is used to display the network topology. Nothing is automatically loaded. Figure 27 

shows the starting interface. 



 61 

 
Figure 27.  MAVNATT Implementation - Starting Interface 

The prototype implementation allows the network administrator to import the 

network topology as discussed in the previous section. The network topology is parsed 

and then displayed on in the GUI as icons. Figure 28 shows the results after importing the 

topology. 

 
Figure 28.  MAVNATT Implementation - Import Network Topology 

The implementation graphically displays nodes as they are described in the 

imported GraphML network topology file shown in Figure 26. Icons are available to 

represent router, switch, computer, or unknown device types. The network administrator 

can then interact with the icons on the screen. This implementation only allows for 



 62 

moving the icons around the screen, but other actions can be implemented in the full 

awareness module, such as retrieving or setting the device type, device OS, interfaces, 

and IP addresses. 

The awareness module should display network status or node health to the 

network administrator. The prototype of this implementation uses ping to demonstrate 

that each node is reachable. Figure 29 shows the results after the network administrator 

selects the ping status from the awareness drop-down menu. 

 
Figure 29.  MAVNATT Implementation - Ping Status 

The network administrator sees the result of the ping status test with the icons 

changing to green if the node was reachable, or red if the node was unreachable. 

Reachability tests are not path-aware in this implementation. In a fully capable awareness 

module we would expect to be able to get a greater level of device status and path-

awareness with protocols like SNMP or WMI.  

This is the point where MAVNATT steers away from a simplistic network-

monitoring tool. In the final version of MAVNATT, the awareness module must achieve 

the ability to overlay a virtual topology on top of the physical topology. This will allow 

the network administrator to execute training scenarios concurrent with monitoring the 

network at a watch station. The network administrator currently only sees one topology, 

but the system should visually delineate real-world network faults from training induced 



 63 

virtual network faults, such as using different color schemes, to allow the network 

administrator to respond appropriately. Therefore, network faults could be induced at the 

virtual layer, while the physical layer remains healthy. This schema would also allow a 

network administrator to stop a training scenario and respond to a real-world fault, if 

necessary. Figure 30 graphically depicts this overlay architecture, which is separated into 

a live and virtual layer for viewing convenience.   

 
Figure 30.  MAVNATT Implementation - Network Overlay 

4. Virtualization 

The virtualization module supports the virtualization layer discussed in the 

previous section. This module receives a file or graph object from the awareness module 

that represents the network topology. The virtualization module then creates a virtual 

topology that can be used to support training and evaluation of network administers on a 

virtual network that is a close representation of the physical network they are 

administering.   

The prototype implementation demonstrates this capability by taking the network 

topology and creating a clone of a baseline configuration for each node. It also 

interconnects the nodes, based on the links reflective of the real world network, with a 

user datagram protocol (UDP) tunnel for each virtualized link. The virtualized network 

uses the VirtualBox hypervisor to pass network traffic between two virtual machines 



 64 

across the UDP tunnels without being broadcast to a live network. We manually set the 

IP address on each virtual machine for this implementation and the results validate that 

the nodes on each side of a link could ping each other. Figure 31 shows the VirtualBox 

user interface after the nodes are created. 

 
Figure 31.  MAVNATT Implementation—VirtualBox and Virtual Machines 

The “GoldDisk” entry in Figure 31 depicts the baseline machine that was cloned 

to generate the other nodes. As the virtualization module develops, more prefabricated 

baselines will become available for all devices, such as routers, switches, and servers. 

Attributes can be added to refine these devices and present a more accurate picture to the 

network administrator. 

The main capability that the prototype implementation is missing is the 

synchronization between the newly created virtual nodes and the representation in the 

awareness module. When the virtualized topology and overlays are established, the 

network awareness module needs to communicate with the virtualization module for any 

training scenarios. The network administrator must be able to interact with the virtual 

nodes through the awareness module, and vice versa. This linkage is critical to the 

success of MAVNATT. 



 65 

D. SUMMARY  

This chapter presented a limited implementation of MAVNATT as a first step 

toward realization of the full capability envisioned for MAVNATT. The chapter first 

established the integrated prototype that used the framework to tie together the 

architecture modules. It then went through a step-wise flow of how the network 

administrator would use MAVANTT. The prototype successfully met all straw-man 

objectives. The implementation demonstrated starting the system, using the menu system 

to import a network topology, pinging nodes on the network to gain awareness, and 

virtualizing the topology. Implementation of fully functional components of MAVNATT 

remains for further research and development. 

  



 66 

THIS PAGE INTENTIONALLY LEFT BLANK 



 67 

V. CONCLUSIONS AND FUTURE RESEARCH 

A. SUMMARY 

This thesis was motivated by the necessity to improve the tools used to train 

network administrators in tactical environments while concurrently supporting network 

operations. We identified a training gap that exists for tactical network administrators and 

surveyed industry solutions that are used along the MAVNATT functional areas. These 

industry solutions fall into two major types of applications that apply to the MAVNATT 

functional areas: network monitoring suites and network simulators. Network monitoring 

suites and network simulators do not address the MAVNATT requirements as an 

integrated and lightweight system. Then the research creates the desired architecture and 

framework for MAVNATT, including the modules and components that support the 

design of MAVNATT. We then provide component-level and integrated prototypes to 

demonstrate desired capabilities and discuss the results for accuracy and completeness. 

The component prototypes demonstrate that MAVNATT is attainable at a functional 

level. We then discuss the implementation of MAVNATT by demonstrating concepts 

with an integrated prototype. 

B. CONCLUSIONS 

The conclusions for this thesis derive from the defined research objective and 

exploratory questions.   

1. Research Objective 

The primary research objective was to demonstrate that MAVNATT is an 

attainable objective. The component prototypes and the straw-man implementation via 

integrated prototype demonstrate that the functional capability exists to generate the 

desired MAVNATT system. With continued research and focused development on the 

various modules, a fully capable system can be achieved.  



 68 

2. Exploratory Research Questions  

This thesis provided six exploratory questions to support the overall research 

objective. Answering these questions provides additional insight into the research and 

allows more definitive conclusions and recommendations 

• What are suitable formats to represent a network topology for importing, 
exporting, and sharing?  

The research concluded that both GraphML and JSON were sufficiently capable 

of representing a network topology. The component prototype utilized the Python 

NetworkX package that allowed the files to be translated into a graph object that could be 

manipulated by MAVNATT. 

• What are suitable libraries and application program interfaces (APIs) that 
can be utilized to create a GUI-based system that is capable of visually 
representing physical and virtual networks? 

A wide variety of APIs support the development of such a system. Our 

implementation used the Python Tkinter GUI library, the Python NetworkX graphing 

library to import and export a GraphML document as a graph object, and the Python 

VirtualBox API. This combination successfully established an environment capable of 

visually representing physical and virtual networks. 

• What are the methods of dynamically modeling a physical network to 
form a virtual network?  

The integrated prototype allowed for the addition and removal of edge and node 

elements, demonstrating that dynamic modeling could be functionally achieved. In the 

context of the MAVNATT system, dynamic modeling, or the constant validation of the 

real-world and virtual topologies, would fall under the mapping and virtual modules.    

• What are the methods of modeling network devices in a virtual 
environment? 

Our research only modeled host devices as a network capability. It demonstrated 

that UDP tunneling could successfully connect two devices with minimal resources. As 

the modeling of network devices expands, this technique should be applied. 

• Can this system be used to demonstrate scenario-based training?   



 69 

The breadth of our research quickly exceeded original estimates and this question 

could not be addressed adequately under this study. Instead, the research was scoped to 

establish the architecture and framework for MAVNATT that we believe supports 

scenario-based training and provides the foundation for realization of the MAVNATT 

vision.   

• Can this system work with current DOD tools?  

Our implementation demonstrated that MAVNATT successfully operated on an 

IP infrastructure and that it could interoperate with current DOD IP-based tools. Further 

implementations of MAVNATT may require administrative permissions or other 

considerations to ensure the network security infrastructure allows it to operate on the 

network without being impeded by firewalls, host-based intrusion systems, and virus 

software. It is expected that a concise interface between the MAVNATT mapping 

function must be defined such that the tool can access the real network through a standard 

gateway, such as a firewall or network address translation server.   

Additionally, our implementation utilized VirtualBox as the type-II hypervisor. 

The VirtualBox implementation supported our research by providing an open-source 

solution and access to its developer community. The DOD uses VMware virtualization 

software. We feel a VMware-based type-II hypervisor solution would be very similar in 

design and capability, but a type-I hypervisor would require some reengineering.    

Provided these considerations are met, we do not perceive any interoperability 

concerns with DOD tools. 

C. RECOMMENDATIONS FOR FUTURE RESEARCH 

The research, supported by the component-level and integrated prototypes 

developed as part of the study, indicate that a system like MAVNATT would increase 

network administrator capability by providing a system that supports concurrent 

operations and training. This thesis is intended to be a first stepping-stone for follow-on 

research and development, providing a foundation and conceptual design. Future 

researchers should improve upon the identified models, architecture, and framework. The 

following recommendations are provided to advance the MAVNATT initiative. 



 70 

1. MAVNATT Architecture Future Research 

a. Mapping Module 

Further investigation is required with respect to identifying a network topology 

through active and passive network scanning methods and describing that network 

topology in a standard format. In addition, the following topics pertinent to network 

mapping are presented for future research: 

• Credential-based methods, including with SNMP and WMI, to securely 
map the network topology while maintaining equivalent capability to 
industry standard network monitoring and mapping tools. 

• Covert methods to map the network topology.  

• Fingerprinting techniques for standard network devices. 

• Network topology confidence levels to identify the accuracy of the 
discovered network topology to the actual topology.  

• Methods to infer access control lists and network policies that affect the 
network topology and performance.   

b. Awareness Module 

Future research should continue to investigate how to visualize a network 

topology as discovered by the mapping module. Further study should also identify an 

overlay methodology to visualize the virtualized components on top of the live 

components for training and evaluation purposes. In addition, the following topics are 

presented for future research:  

• Integrate a design capability into the awareness module that allows a 
network administrator to build and virtualize a network while not 
connected to a physical topology. 

• Integrate a more capable image set that uses Scalable Vector Graphics 
(SVG) that could be integrated with the GraphML format. 

• Integrate common network monitoring capabilities. Include a minimum 
set of network faults to be identified by the awareness module.  

• Identify methods for implementing advanced protocols for path-
awareness, route discovery, and forwarding table interrogation.  



 71 

• Identify how to merge multiple network topologies from file formats into 
a single network topology.  (Graph union operations) 

• Identify how to compare multiple network topologies from file formats to 
identify differences.  (Graph intersection and difference operations) 

• Integrate common network management capabilities, such as SSH and 
TFTP, to assist in the management of both live and virtual devices. 

• Integrate a web service for remote viewing of the MAVNATT interface. 

• Provide the capability to integrate multiple MAVNATT instances with a 
shared view of the composite network. 

• Integrate a logging capability to both the network operations and training 
aspects of the system. 

• Represent dependencies, such as power and transmission devices, as 
layers in the awareness module. 

• Identify how to deploy an environment built in the virtual environment, 
and evaluated within that environment, to the live network.   

• Identify how to incorporate traffic capture, traffic generation, and traffic 
playback for network training and evaluation in MAVNATT. 

c. Virtualization Module 

This functional area should expand the investigation as to how to virtualize a 

network topology from a graph format and provide the capability to interact with 

virtualized entities for the purposes of training and evaluation. In addition, the following 

topics are presented for future research:   

• Designate virtualization modes for training or evaluation. The training 
mode should support network administrator training by overlaying virtual 
devices with faults onto the physical device within the context of the 
awareness module. The evaluation mode should enable an interactive 
capability to evaluate network operator proficiency. 

• Implement a capability within MAVNATT to support network planning 
and design. 

• Determine the scalability of type-I, type-II, and cloud-based virtual 
solutions. 

• Integrate channel emulation on virtual links to represent tactical 
transmissions and mobile adhoc networks. 



 72 

• Integrate automatic provisioning software, like Puppet or Chef. 

• Research simulating heavyweight network devices, like a Windows-based 
server, on lightweight virtual devices such as TinyCore Linux. This would 
reduce resource overhead and increase scalability during training and 
evaluation scenarios. 

2. MAVNATT Framework Future Research 

a. Network Topology Format Component 

GraphML and JSON were successful in providing baseline data for the network 

topology. The prototypes were successful at utilizing these formats, but the virtualization 

component prototype identified a greater complexity of information that may need to be 

stored in the network topology format, such as router configurations, nested nodes and 

edges, and both live and virtual data for a single node or edge. The following areas need 

investigation: 

• A MAVNATT-specific network topology format in XML. 

• Libraries to abstract file input and output to ease programming of import 
and export of files from and to graph objects. 

b. GUI Component 

The Python component prototype successfully met all conceptual requirements. 

However, issues with the integrated prototype demonstrated the need to conduct further 

research in this area. 

• Develop a Java Swing GUI prototype.  

• Conduct usability and scalability testing with both the Python Tkinter and 
Java Swing integrated prototypes. 

3. MAVNATT System Future Research 

The following research topics refer to the MAVNATT system as a whole:  

• There were many complications delivering a robust prototype for the 
MAVNATT system. In our research, we discussed GNS3, which is an 
open source network simulator. A future research topic may be to utilize 
GNS3 as the base of MAVNATT since it provides a pre-existing GUI 
interface, development module, and VirtualBox integration. 



 73 

• Research integrating the MAVNATT final project into the Marine Corps 
systems planning, engineering and evaluation device (SPEED) and joint 
planning systems to support network planning and performance 
prediction. 

• The final MAVNATT system should be formally integrated into the 
operational and training requirements outlined in the T&R manuals. 

4. MAVNATT Employment Considerations 

Throughout the research of this thesis, many different employment scenarios were 

discussed in which a MAVNATT-based system would provide advantages to improve 

current tactics, techniques, and procedures. Implementation of these employment 

scenarios requires a robust technology readiness level for MAVNATT. The following 

considerations could help to provide purpose for future development to achieve the 

necessary readiness level. 

a. Network Planning and Validation Tool 

MAVNATT could provide the capability to support planning and validation of 

network architectures in tactical environments. Network administrators could build a 

network topology in MAVNATT, virtualize it, evaluate it, and then deploy that network 

to the physical devices. 

b. Integrated Network Training 

MAVNATT could connect to other MAVNATTs representing a separate local 

area network or scope. Once connected, the root MAVNATT could deploy training 

scenarios that cross multiple networks and allow network administrators to execute cross 

boundary tactics, techniques, and procedures to communicate with external agencies. 

This integrated network training could be logged and evaluated to assess network 

administrator proficiency on a larger scale. 

c. Cyber Operations 

As cyber operations move to the tactical level of deployed operational units, 

offensive and defensive cyber operations become critical. MAVNATT provides a 

lightweight platform that is capable of mapping, visualization, and virtualization to 



 74 

support evaluation of both domains of cyber operations by projecting the impact of 

adversarial actions on friendly networks as well as providing a platform for predicting the 

efficacy of friendly actions on adversarial networks. Cyber operators could use 

MAVNATT to identify a cyber area of operations through passive or active mapping 

techniques from multiple entry points on a network. Once a network topology is 

identified, the topology could be virtualized and evaluated for vectors to a target. 

Scenarios could be run in the virtualized environment to model the attack vectors and 

determine success ratios. Furthermore, multiple views of the network topology could be 

compared and merged via back-channel communications to higher echelons for further 

evaluation and determination of a combined vector to increase likelihood of mission 

success. 

 



 75 

LIST OF REFERENCES 

[1] Expeditionary Force 21, U.S. Marine Corps, Washington, DC, 2014.  

[2] Joint Communication System, Joint Publication 6–0, Joint Staff, Washington, DC, 
2010.  

[3] B. Williams. “The Joint Force Commander’s guide to Cyberspace Operations,” in 
Joint Force Quarterly, 2014, vol. 73, pp.  12–19.  

[4] L. Pridmore, P. Lardieri, and R. Hollister. “National Cyber Range (NCR) 
automated test tools: Implications and application to network-centric support 
tools,” in Proc. AUTOTESTCON, 2010 IEEE, Orlando, FL, 2010, pp.  1–4. 

[5] R. Powell, T. Holmes, and C. Pie. “The information assurance range,” in TEA 
Journal, 2010, vol. 31, pp. 473–477.  

[6] Military Occupational Specialties Manual, NAVMC 1200.1, U.S. Marine Corps, 
Washington, DC, 2014. 

[7] Communications Training and Readiness Manual, NAVMC 3500.56A, U.S. 
Marine Corps, Washington, DC, 2011.  

[8] Internet Protocol Suite. (n.d.). Wikipedia. Available:  
http://en.wikipedia.org/wiki/Internet_protocol_suite  Accessed:  May 12, 2015. 

[9] How TCP/IP works.  (2003, Mar. 28). Microsoft.  [Online]. Available: 
https://technet.microsoft.com/en-us/library/cc786128(v=ws.10).aspx 

[10] R. Siamwalla, R. Sharma, and S. Keshav. “Discovering Internet topology.” 
Unpublished manuscript, 1998. 

[11] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Latapy, C. 
Magnien, and R. Teixeira. “Avoiding traceroute anomalies with Paris traceroute,” 
in Proc. 6th ACM SIGCOMM Internet Measurement Conference, Rio de Janeiro, 
Brazil, 2006, pp. 153–158.  

[12] D. Harrington, R. Presuhn, and B. Wijnen. “An Architecture for Describing 
Simple Network Management Protocol (SNMP) Management Frameworks,” STD 
62, RFC 3411, Dec. 2002. 

[13] W. Stallings. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, 3rd ed. Boston, 
MA:  Addison-Wesley Longman Publishing Co., Inc., 1998. 

[14] What is SNMP?  (2003, Mar. 28). Microsoft.  [Online]. Available: 
https://technet.microsoft.com/en-us/library/cc776379(v=ws.10).aspx 



 76 

[15] Angry IP Scanner.  (n.d.). Angry IP Scanner.  [Online]. Available:  
http://angryip.org  Accessed:  May 12, 2015. 

[16] Ipscan.  (n.d.). Github.  [Online]. Available:   
https://github.com/angryziber/ipscan  Accessed:  May 12, 2015. 

[17] Nmap.  (n.d.). Nmap.  [Online]. Available: https://www.nmap.org  Accessed:  
May 12, 2015. 

[18] Nmap.  (n.d.). Github.  [Online]. Available: https://github.com/nmap/nmap  
Accessed:  May 12, 2015. 

[19] D. Mauro and K. Schmidt. Essential SNMP, 2nd ed. Sebastopol, CA:  O’Reilly 
Media, Inc., 2005. 

[20] P. Moceri. “SNMP and Beyond: A Survey of Network Performance Monitoring 
Tools,”  2004. 

[21] SolarWinds screenshot. (n.d.). SolarWinds.  [Online]. Available: 
http://cdn.swcdn.net/creative/v13.1/images/screenshots/products/NPM/Lg/En/NP
M_11.0_Main-Screen-Shot_Base_Lg_EN.jpg  Accessed:  May 12, 2015. 

[22] SolarWinds.  (2015). SolarWinds Network Performance Monitor Administrator 
Guide, v11.5. SolarWinds Worldwide, LLC.  [Online]. Available:  
http://www.solarwinds.com/documentation/orion/docs/orionnpmadministratorgui
de.pdf 

[23] M. Qadir.  “Comparative Analysis of two Open Source Network Monitoring 
Systems: Nagios & OpenNMS,” Ph.D. dissertation, Blekinge Institute of 
Technology, 2010.  

[24] Nagios.  (n.d.). Nagios.  [Online]. Available: https://www.nagios.org  Accessed:  
May 12, 2015.  

[25] Nagios.  (n.d.). Sourceforge.  [Online]. Available:  
https://sourceforge.net/projects/nagios/  Accessed:  May 12, 2015. 

[26] Nagios screenshot. (n.d.). Sourceforge.  [Online]. Available: 
http://nagios.sourceforge.net/images/screens/new/home.png  Accessed:  May 12, 
2015. 

[27] OpenNMS.  (n.d.). OpenNMS.  [Online]. Available:  http://www.opennms.org  
Accessed:  May 12, 2015. 

[28] OpenNMS.  (n.d.). Github.  [Online]. Available: 
https://github.com/OpenNMS/opennms  Accessed:  May 12, 2015. 



 77 

[29] Hypervisor.  (n.d.). Wikipedia.  [Online]. Available: 
https://en.wikipedia.org/wiki/Hypervisor  Accessed:  May 12, 2015. 

[30] Developers, VirtualBox.  (2015, May 12). VirtualBox Screenshot.  [Online]. 
Available: https://www.virtualbox.org/raw-attachment/wiki/Screenshots/win7.png 

[31] Oracle VM VirtualBox user manual.  (n.d.). Oracle.  [Online]. Available:  
https://www.virtualbox.org/manual/UserManual.html  Accessed:  May 12, 2015. 

[32] VirtualBox.  (n.d.). Oracle.  [Online]. Available:  
https://www.virtualbox.org/browser/vbox/trunk  Accessed:  May 12, 2015. 

[33] VMware Fusion.  (n.d.). VMware.  [Online]. Available: 
https://www.VMware.com/products/fusion  Accessed:  May 12, 2015. 

[34] VIX API Documentation.  (n.d.). VMware.  [Online]. Available:  
https://www.VMware.com/support/developer/vix-api/  Accessed:  May 12, 2015. 

[35] VMware Fusion 7 Screenshot.  (n.d.). VMware.  [Online]. Available: 
https://www.VMware.com/files/images/screens_fusion/f7/vmw-scrnsht-
fusionpro-cloning.jpg  Accessed:  May 12, 2015. 

[36] Kernel Virtual Machine.  (n.d.). Linux KVM.  [Online]. Available:  
https://www.linux-kvm.org/page/Main_Page  Accessed:  May 12, 2015. 

[37] GNS3. (n.d.). GNS3  [Online]. Available:  https://www.gns3.com  Accessed:  
May 12, 2015. 

[38] Common Open Research Emulator (CORE). (n.d.). U.S. Navy Research Lab.  
[Online]. Available:  http://www.nrl.navy.mil/itd/ncs/products/core  Accessed:  
May 12, 2015. 

[39] J. Ahrenholz, “Comparison of CORE network emulation platforms,” in Proc. 
IEEE MILCOM Conference, San Jose, CA, 2010, pp. 864–869.  

[40] Netkit.  (n.d.). Netkit  [Online]. Available:  
http://wiki.Netkit.org/index.php/Main_Page  Accessed:  May 12, 2015. 

[41] Neo4J. (n.d.). Neo4j  [Online]. Available: http://www.neo4j.com  Accessed:  May 
12, 2015. 

[42] J. Webber. “A programmatic introduction to neo4j,” in Proc. 3rd annual 
conference on Systems, Programming, and Applications: Software for Humanity. 
ACM, 2012, pp. 217–218. 

[43] JSON. (n.d.). JSON.  [Online]. Available:  http://www.json.org  Accessed:  May 
12, 2015. 



 78 

[44] N. Nurseitov, M. Paulson, R. Reynolds, and C. Izurieta.  “Comparison of JSON 
and XML Data Interchange Formats: A Case Study,” Caine, 2009, pp. 157–162. 

[45] The GraphML File Format. (n.d.). GraphML  [Online]. Available:   
http://graphml.graphdrawing.org  Accessed:  May 12, 2015. 

[46] L. Prechelt. “An empirical comparison of C, C++, Java, Perl, Python, Rexx and 
Tcl,” IEEE Computer 33, vol. 10, 2000, pp.  23–29. 

[47] D. Wu, L. Chen, Y. Zhou, and B. Xu.  “A metrics-based comparative study on 
object-oriented programming languages.” 

[48] S. Nanz and C. Furia. “A comparative study of programming languages in Rosetta 
Code.” arXiv preprint arXiv:1409.0252, 2014.  

[49] About the JFC and Swing. (n.d.). Oracle.  [Online]. Available:  
http://docs.oracle.com/javase/tutorial/uiswing/start/about.html  Accessed:  May 
12, 2015. 

[50] Tkinter.  (n.d.). Tkinter   [Online]. Available:  
https://wiki.python.org/moin/TkInter  Accessed:  May 12, 2015. 

[51] Qt.  (n.d.). Qt  [Online]. Available:  http://www.qt.io  Accessed:  May 12, 2015. 



 79 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 


	NAVAL
	POSTGRADUATE
	SCHOOL
	I. INTRODUCTION
	A. OVERVIEW
	B. MOTIVATION
	C. SCOPE
	D. Research OBJECTIVE
	E. Exploratory RESEARCH QUESTIONS
	F. Assumptions
	G. APPROACH
	H. benefits of research
	I. ORGANIZATION

	II. BACKGROUND
	A. Overview
	B. Network administrator TRAINING
	1. Required Training
	2. Skill Progression/Enhancement Training
	3. Training & Readiness Individual and Collective Events
	4. Network Administrator Training in Tactical Environments
	5. Network Administrator Training Summary

	C. Current Tools SURVEY
	1. Mapping
	a. Internet Protocol Suite
	b. Simple Network Management Protocol (SNMP)
	c. Angry IP Scanner
	d. Nmap/Zenmap.
	e. Mapping Summary

	2. Awareness
	a. SolarWinds Network Performance Manager
	b. Nagios
	c. OpenNMS
	d. Awareness Summary

	3. Virtualization
	a. VirtualBox
	b. VMware Fusion
	c. Kernel-Based Virtual Machine (KVM)
	d. Virtualization Summary

	4. Network Simulators
	a. Graphical Network Simulator (GNS3)
	b. Common Open Research Emulator
	c. Netkit
	d. Network Simulator Summary

	5. Current Tools Survey Summary

	D. Summary

	III. DESIGN AND METHODOLOGY
	A. overview
	B. MAVNATT architecture
	1. Mapping
	a. Objectives
	b. Requirements

	2. Awareness
	a. Objectives
	b. Requirements

	3. Virtualization
	a. Requirements

	4. Architecture Summary

	C. MAVNATT Framework
	D. Network Topology Format
	1. Network Topology Format Objectives
	2. Network Topology Format Review
	a. Neo4j
	b. JSON Format
	c. GraphML Format
	d. Network Topology Format Survey Summary

	3. Network Topology Format Component Prototypes
	a. JSON Prototype
	b. GraphML Prototype

	4. Network Topology Format Component Summary

	E. Programming Language
	1. Programming Language Objectives
	2. Programming Language Review
	a. C++
	b. Java
	c. Python
	d. Programming Language Review Summary

	3. Programming Language Component Summary

	F. GUI
	1. GUI Objectives
	2. GUI Review
	a. Java Swing GUI
	b. Python Tkinter GUI
	c. Qt GUI
	d. GUI Review Summary

	3. GUI Component Prototype
	a. Python Tkinter GUI Prototype

	4. GUI Component Summary

	G. Virtualization API
	1. Virtualization API Objectives
	2. Component Prototypes
	a. Java VirtualBox API
	b. Python VirtualBox API

	3. Virtualization API Component Summary

	H. Component prototype Summary
	I. Summary

	IV. implementation
	A. overview
	B. integrated prototype
	1. Prototype Design
	2. Prototype Capabilities

	C. Implementation
	1. Overview
	2. Mapping
	3. Awareness
	4. Virtualization

	D. Summary

	V. CONCLUSIONS and future research
	A. Summary
	B. Conclusions
	1. Research Objective
	2. Exploratory Research Questions

	C. RECOMMENDATIONS for future research
	1. MAVNATT Architecture Future Research
	a. Mapping Module
	b. Awareness Module
	c. Virtualization Module

	2. MAVNATT Framework Future Research
	a. Network Topology Format Component
	b. GUI Component

	3. MAVNATT System Future Research
	4. MAVNATT Employment Considerations
	a. Network Planning and Validation Tool
	b. Integrated Network Training
	c. Cyber Operations



	List of References
	initial distribution list

